Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells

Mitochondrial activity and metabolic reprogramming influence the phenotype of cancer cells and resistance to targeted therapy. We previously established that an insulin-like growth factor 1 (IGF-1)-inducible mitochondrial UTP carrier (PNC1/SLC25A33) promotes cell growth. This prompted us to investig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2017-10, Vol.292 (41), p.16983-16998
Hauptverfasser: Lyons, Amy, Coleman, Michael, Riis, Sarah, Favre, Cedric, O'Flanagan, Ciara H., Zhdanov, Alexander V., Papkovsky, Dmitri B., Hursting, Stephen D., O'Connor, Rosemary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16998
container_issue 41
container_start_page 16983
container_title The Journal of biological chemistry
container_volume 292
creator Lyons, Amy
Coleman, Michael
Riis, Sarah
Favre, Cedric
O'Flanagan, Ciara H.
Zhdanov, Alexander V.
Papkovsky, Dmitri B.
Hursting, Stephen D.
O'Connor, Rosemary
description Mitochondrial activity and metabolic reprogramming influence the phenotype of cancer cells and resistance to targeted therapy. We previously established that an insulin-like growth factor 1 (IGF-1)-inducible mitochondrial UTP carrier (PNC1/SLC25A33) promotes cell growth. This prompted us to investigate whether IGF signaling is essential for mitochondrial maintenance in cancer cells and whether this contributes to therapy resistance. Here we show that IGF-1 stimulates mitochondrial biogenesis in a range of cell lines. In MCF-7 and ZR75.1 breast cancer cells, IGF-1 induces peroxisome proliferator–activated receptor γ coactivator 1β (PGC-1β) and PGC-1α–related coactivator (PRC). Suppression of PGC-1β and PRC with siRNA reverses the effects of IGF-1 and disrupts mitochondrial morphology and membrane potential. IGF-1 also induced expression of the redox regulator nuclear factor-erythroid-derived 2-like 2 (NFE2L2 alias NRF-2). Of note, MCF-7 cells with acquired resistance to an IGF-1 receptor (IGF-1R) tyrosine kinase inhibitor exhibited reduced expression of PGC-1β, PRC, and mitochondrial biogenesis. Interestingly, these cells exhibited mitochondrial dysfunction, indicated by reactive oxygen species expression, reduced expression of the mitophagy mediators BNIP3 and BNIP3L, and impaired mitophagy. In agreement with this, IGF-1 robustly induced BNIP3 accumulation in mitochondria. Other active receptor tyrosine kinases could not compensate for reduced IGF-1R activity in mitochondrial protection, and MCF-7 cells with suppressed IGF-1R activity became highly dependent on glycolysis for survival. We conclude that IGF-1 signaling is essential for sustaining cancer cell viability by stimulating both mitochondrial biogenesis and turnover through BNIP3 induction. This core mitochondrial protective signal is likely to strongly influence responses to therapy and the phenotypic evolution of cancer.
doi_str_mv 10.1074/jbc.M117.792838
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5641874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820339326</els_id><sourcerecordid>1930476277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-c05a42da5583b5586245f72a11ed39248db717c79a97769bb424d6ef624fb9d33</originalsourceid><addsrcrecordid>eNp1kcFPHCEUxomp0e3q2VvDsZfZBYYZ4NKkMWpNbHrRxBth4M0sOgtbmF3jf1-2a017KAdI-H587_E-hC4oWVAi-PKps4vvlIqFUEzW8gjNKJF1VTf08QOaEcJopVgjT9HHnJ9IWVzRE3TKpGS0JWqGwm3I29GHavTPgIcUX6YV7o2dYsIUZz8EU9QB-4whZwiTNyPui7j2U7SrGFza33Q-DhAgF8wE91vcrMzwin3A1gQLCVsYx3yGjnszZjh_O-fo4frq_vJbdffj5vby611lG6KmypLGcOZM08i6K1vLeNMLZigFVyvGpesEFVYoo4RoVddxxl0LfeH6Trm6nqMvB9_NtluDs6XxZEa9SX5t0quOxut_leBXeog73bScSsGLwec3gxR_biFPeu3z_gsmQNxmTVVNuGiZEAVdHlCbYs4J-vcylOh9SrqkpPcp6UNK5cWnv7t75__EUgB1AKDMaOch6Ww9lDE6n8BO2kX_X_NfU6yj0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930476277</pqid></control><display><type>article</type><title>Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lyons, Amy ; Coleman, Michael ; Riis, Sarah ; Favre, Cedric ; O'Flanagan, Ciara H. ; Zhdanov, Alexander V. ; Papkovsky, Dmitri B. ; Hursting, Stephen D. ; O'Connor, Rosemary</creator><creatorcontrib>Lyons, Amy ; Coleman, Michael ; Riis, Sarah ; Favre, Cedric ; O'Flanagan, Ciara H. ; Zhdanov, Alexander V. ; Papkovsky, Dmitri B. ; Hursting, Stephen D. ; O'Connor, Rosemary</creatorcontrib><description>Mitochondrial activity and metabolic reprogramming influence the phenotype of cancer cells and resistance to targeted therapy. We previously established that an insulin-like growth factor 1 (IGF-1)-inducible mitochondrial UTP carrier (PNC1/SLC25A33) promotes cell growth. This prompted us to investigate whether IGF signaling is essential for mitochondrial maintenance in cancer cells and whether this contributes to therapy resistance. Here we show that IGF-1 stimulates mitochondrial biogenesis in a range of cell lines. In MCF-7 and ZR75.1 breast cancer cells, IGF-1 induces peroxisome proliferator–activated receptor γ coactivator 1β (PGC-1β) and PGC-1α–related coactivator (PRC). Suppression of PGC-1β and PRC with siRNA reverses the effects of IGF-1 and disrupts mitochondrial morphology and membrane potential. IGF-1 also induced expression of the redox regulator nuclear factor-erythroid-derived 2-like 2 (NFE2L2 alias NRF-2). Of note, MCF-7 cells with acquired resistance to an IGF-1 receptor (IGF-1R) tyrosine kinase inhibitor exhibited reduced expression of PGC-1β, PRC, and mitochondrial biogenesis. Interestingly, these cells exhibited mitochondrial dysfunction, indicated by reactive oxygen species expression, reduced expression of the mitophagy mediators BNIP3 and BNIP3L, and impaired mitophagy. In agreement with this, IGF-1 robustly induced BNIP3 accumulation in mitochondria. Other active receptor tyrosine kinases could not compensate for reduced IGF-1R activity in mitochondrial protection, and MCF-7 cells with suppressed IGF-1R activity became highly dependent on glycolysis for survival. We conclude that IGF-1 signaling is essential for sustaining cancer cell viability by stimulating both mitochondrial biogenesis and turnover through BNIP3 induction. This core mitochondrial protective signal is likely to strongly influence responses to therapy and the phenotypic evolution of cancer.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M117.792838</identifier><identifier>PMID: 28821609</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>cancer biology ; cancer therapy ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; cell metabolism ; cell signaling ; cell surface receptor ; Cell Survival - genetics ; drug resistance ; Humans ; insulin-like growth factor (IGF) ; Insulin-Like Growth Factor I - genetics ; Insulin-Like Growth Factor I - metabolism ; MCF-7 Cells ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial Dynamics ; Mitophagy ; Molecular Bases of Disease ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; NF-E2-Related Factor 2 - genetics ; NF-E2-Related Factor 2 - metabolism ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; Receptor, IGF Type 1 ; Receptors, Somatomedin - genetics ; Receptors, Somatomedin - metabolism ; RNA-Binding Proteins ; Signal Transduction ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism</subject><ispartof>The Journal of biological chemistry, 2017-10, Vol.292 (41), p.16983-16998</ispartof><rights>2017 © THE AUTHORS. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-c05a42da5583b5586245f72a11ed39248db717c79a97769bb424d6ef624fb9d33</citedby><cites>FETCH-LOGICAL-c509t-c05a42da5583b5586245f72a11ed39248db717c79a97769bb424d6ef624fb9d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641874/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641874/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28821609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyons, Amy</creatorcontrib><creatorcontrib>Coleman, Michael</creatorcontrib><creatorcontrib>Riis, Sarah</creatorcontrib><creatorcontrib>Favre, Cedric</creatorcontrib><creatorcontrib>O'Flanagan, Ciara H.</creatorcontrib><creatorcontrib>Zhdanov, Alexander V.</creatorcontrib><creatorcontrib>Papkovsky, Dmitri B.</creatorcontrib><creatorcontrib>Hursting, Stephen D.</creatorcontrib><creatorcontrib>O'Connor, Rosemary</creatorcontrib><title>Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Mitochondrial activity and metabolic reprogramming influence the phenotype of cancer cells and resistance to targeted therapy. We previously established that an insulin-like growth factor 1 (IGF-1)-inducible mitochondrial UTP carrier (PNC1/SLC25A33) promotes cell growth. This prompted us to investigate whether IGF signaling is essential for mitochondrial maintenance in cancer cells and whether this contributes to therapy resistance. Here we show that IGF-1 stimulates mitochondrial biogenesis in a range of cell lines. In MCF-7 and ZR75.1 breast cancer cells, IGF-1 induces peroxisome proliferator–activated receptor γ coactivator 1β (PGC-1β) and PGC-1α–related coactivator (PRC). Suppression of PGC-1β and PRC with siRNA reverses the effects of IGF-1 and disrupts mitochondrial morphology and membrane potential. IGF-1 also induced expression of the redox regulator nuclear factor-erythroid-derived 2-like 2 (NFE2L2 alias NRF-2). Of note, MCF-7 cells with acquired resistance to an IGF-1 receptor (IGF-1R) tyrosine kinase inhibitor exhibited reduced expression of PGC-1β, PRC, and mitochondrial biogenesis. Interestingly, these cells exhibited mitochondrial dysfunction, indicated by reactive oxygen species expression, reduced expression of the mitophagy mediators BNIP3 and BNIP3L, and impaired mitophagy. In agreement with this, IGF-1 robustly induced BNIP3 accumulation in mitochondria. Other active receptor tyrosine kinases could not compensate for reduced IGF-1R activity in mitochondrial protection, and MCF-7 cells with suppressed IGF-1R activity became highly dependent on glycolysis for survival. We conclude that IGF-1 signaling is essential for sustaining cancer cell viability by stimulating both mitochondrial biogenesis and turnover through BNIP3 induction. This core mitochondrial protective signal is likely to strongly influence responses to therapy and the phenotypic evolution of cancer.</description><subject>cancer biology</subject><subject>cancer therapy</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>cell metabolism</subject><subject>cell signaling</subject><subject>cell surface receptor</subject><subject>Cell Survival - genetics</subject><subject>drug resistance</subject><subject>Humans</subject><subject>insulin-like growth factor (IGF)</subject><subject>Insulin-Like Growth Factor I - genetics</subject><subject>Insulin-Like Growth Factor I - metabolism</subject><subject>MCF-7 Cells</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Dynamics</subject><subject>Mitophagy</subject><subject>Molecular Bases of Disease</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Receptor, IGF Type 1</subject><subject>Receptors, Somatomedin - genetics</subject><subject>Receptors, Somatomedin - metabolism</subject><subject>RNA-Binding Proteins</subject><subject>Signal Transduction</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFPHCEUxomp0e3q2VvDsZfZBYYZ4NKkMWpNbHrRxBth4M0sOgtbmF3jf1-2a017KAdI-H587_E-hC4oWVAi-PKps4vvlIqFUEzW8gjNKJF1VTf08QOaEcJopVgjT9HHnJ9IWVzRE3TKpGS0JWqGwm3I29GHavTPgIcUX6YV7o2dYsIUZz8EU9QB-4whZwiTNyPui7j2U7SrGFza33Q-DhAgF8wE91vcrMzwin3A1gQLCVsYx3yGjnszZjh_O-fo4frq_vJbdffj5vby611lG6KmypLGcOZM08i6K1vLeNMLZigFVyvGpesEFVYoo4RoVddxxl0LfeH6Trm6nqMvB9_NtluDs6XxZEa9SX5t0quOxut_leBXeog73bScSsGLwec3gxR_biFPeu3z_gsmQNxmTVVNuGiZEAVdHlCbYs4J-vcylOh9SrqkpPcp6UNK5cWnv7t75__EUgB1AKDMaOch6Ww9lDE6n8BO2kX_X_NfU6yj0A</recordid><startdate>20171013</startdate><enddate>20171013</enddate><creator>Lyons, Amy</creator><creator>Coleman, Michael</creator><creator>Riis, Sarah</creator><creator>Favre, Cedric</creator><creator>O'Flanagan, Ciara H.</creator><creator>Zhdanov, Alexander V.</creator><creator>Papkovsky, Dmitri B.</creator><creator>Hursting, Stephen D.</creator><creator>O'Connor, Rosemary</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171013</creationdate><title>Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells</title><author>Lyons, Amy ; Coleman, Michael ; Riis, Sarah ; Favre, Cedric ; O'Flanagan, Ciara H. ; Zhdanov, Alexander V. ; Papkovsky, Dmitri B. ; Hursting, Stephen D. ; O'Connor, Rosemary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-c05a42da5583b5586245f72a11ed39248db717c79a97769bb424d6ef624fb9d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>cancer biology</topic><topic>cancer therapy</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>cell metabolism</topic><topic>cell signaling</topic><topic>cell surface receptor</topic><topic>Cell Survival - genetics</topic><topic>drug resistance</topic><topic>Humans</topic><topic>insulin-like growth factor (IGF)</topic><topic>Insulin-Like Growth Factor I - genetics</topic><topic>Insulin-Like Growth Factor I - metabolism</topic><topic>MCF-7 Cells</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Dynamics</topic><topic>Mitophagy</topic><topic>Molecular Bases of Disease</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Receptor, IGF Type 1</topic><topic>Receptors, Somatomedin - genetics</topic><topic>Receptors, Somatomedin - metabolism</topic><topic>RNA-Binding Proteins</topic><topic>Signal Transduction</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyons, Amy</creatorcontrib><creatorcontrib>Coleman, Michael</creatorcontrib><creatorcontrib>Riis, Sarah</creatorcontrib><creatorcontrib>Favre, Cedric</creatorcontrib><creatorcontrib>O'Flanagan, Ciara H.</creatorcontrib><creatorcontrib>Zhdanov, Alexander V.</creatorcontrib><creatorcontrib>Papkovsky, Dmitri B.</creatorcontrib><creatorcontrib>Hursting, Stephen D.</creatorcontrib><creatorcontrib>O'Connor, Rosemary</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyons, Amy</au><au>Coleman, Michael</au><au>Riis, Sarah</au><au>Favre, Cedric</au><au>O'Flanagan, Ciara H.</au><au>Zhdanov, Alexander V.</au><au>Papkovsky, Dmitri B.</au><au>Hursting, Stephen D.</au><au>O'Connor, Rosemary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2017-10-13</date><risdate>2017</risdate><volume>292</volume><issue>41</issue><spage>16983</spage><epage>16998</epage><pages>16983-16998</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Mitochondrial activity and metabolic reprogramming influence the phenotype of cancer cells and resistance to targeted therapy. We previously established that an insulin-like growth factor 1 (IGF-1)-inducible mitochondrial UTP carrier (PNC1/SLC25A33) promotes cell growth. This prompted us to investigate whether IGF signaling is essential for mitochondrial maintenance in cancer cells and whether this contributes to therapy resistance. Here we show that IGF-1 stimulates mitochondrial biogenesis in a range of cell lines. In MCF-7 and ZR75.1 breast cancer cells, IGF-1 induces peroxisome proliferator–activated receptor γ coactivator 1β (PGC-1β) and PGC-1α–related coactivator (PRC). Suppression of PGC-1β and PRC with siRNA reverses the effects of IGF-1 and disrupts mitochondrial morphology and membrane potential. IGF-1 also induced expression of the redox regulator nuclear factor-erythroid-derived 2-like 2 (NFE2L2 alias NRF-2). Of note, MCF-7 cells with acquired resistance to an IGF-1 receptor (IGF-1R) tyrosine kinase inhibitor exhibited reduced expression of PGC-1β, PRC, and mitochondrial biogenesis. Interestingly, these cells exhibited mitochondrial dysfunction, indicated by reactive oxygen species expression, reduced expression of the mitophagy mediators BNIP3 and BNIP3L, and impaired mitophagy. In agreement with this, IGF-1 robustly induced BNIP3 accumulation in mitochondria. Other active receptor tyrosine kinases could not compensate for reduced IGF-1R activity in mitochondrial protection, and MCF-7 cells with suppressed IGF-1R activity became highly dependent on glycolysis for survival. We conclude that IGF-1 signaling is essential for sustaining cancer cell viability by stimulating both mitochondrial biogenesis and turnover through BNIP3 induction. This core mitochondrial protective signal is likely to strongly influence responses to therapy and the phenotypic evolution of cancer.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28821609</pmid><doi>10.1074/jbc.M117.792838</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2017-10, Vol.292 (41), p.16983-16998
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5641874
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects cancer biology
cancer therapy
Carrier Proteins - genetics
Carrier Proteins - metabolism
cell metabolism
cell signaling
cell surface receptor
Cell Survival - genetics
drug resistance
Humans
insulin-like growth factor (IGF)
Insulin-Like Growth Factor I - genetics
Insulin-Like Growth Factor I - metabolism
MCF-7 Cells
Membrane Proteins - genetics
Membrane Proteins - metabolism
mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Mitochondrial Dynamics
Mitophagy
Molecular Bases of Disease
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - pathology
NF-E2-Related Factor 2 - genetics
NF-E2-Related Factor 2 - metabolism
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - metabolism
Receptor, IGF Type 1
Receptors, Somatomedin - genetics
Receptors, Somatomedin - metabolism
RNA-Binding Proteins
Signal Transduction
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
title Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin-like%20growth%20factor%201%20signaling%20is%20essential%20for%20mitochondrial%20biogenesis%20and%20mitophagy%20in%20cancer%20cells&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Lyons,%20Amy&rft.date=2017-10-13&rft.volume=292&rft.issue=41&rft.spage=16983&rft.epage=16998&rft.pages=16983-16998&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M117.792838&rft_dat=%3Cproquest_pubme%3E1930476277%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930476277&rft_id=info:pmid/28821609&rft_els_id=S0021925820339326&rfr_iscdi=true