Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells
Mitochondrial activity and metabolic reprogramming influence the phenotype of cancer cells and resistance to targeted therapy. We previously established that an insulin-like growth factor 1 (IGF-1)-inducible mitochondrial UTP carrier (PNC1/SLC25A33) promotes cell growth. This prompted us to investig...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2017-10, Vol.292 (41), p.16983-16998 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16998 |
---|---|
container_issue | 41 |
container_start_page | 16983 |
container_title | The Journal of biological chemistry |
container_volume | 292 |
creator | Lyons, Amy Coleman, Michael Riis, Sarah Favre, Cedric O'Flanagan, Ciara H. Zhdanov, Alexander V. Papkovsky, Dmitri B. Hursting, Stephen D. O'Connor, Rosemary |
description | Mitochondrial activity and metabolic reprogramming influence the phenotype of cancer cells and resistance to targeted therapy. We previously established that an insulin-like growth factor 1 (IGF-1)-inducible mitochondrial UTP carrier (PNC1/SLC25A33) promotes cell growth. This prompted us to investigate whether IGF signaling is essential for mitochondrial maintenance in cancer cells and whether this contributes to therapy resistance. Here we show that IGF-1 stimulates mitochondrial biogenesis in a range of cell lines. In MCF-7 and ZR75.1 breast cancer cells, IGF-1 induces peroxisome proliferator–activated receptor γ coactivator 1β (PGC-1β) and PGC-1α–related coactivator (PRC). Suppression of PGC-1β and PRC with siRNA reverses the effects of IGF-1 and disrupts mitochondrial morphology and membrane potential. IGF-1 also induced expression of the redox regulator nuclear factor-erythroid-derived 2-like 2 (NFE2L2 alias NRF-2). Of note, MCF-7 cells with acquired resistance to an IGF-1 receptor (IGF-1R) tyrosine kinase inhibitor exhibited reduced expression of PGC-1β, PRC, and mitochondrial biogenesis. Interestingly, these cells exhibited mitochondrial dysfunction, indicated by reactive oxygen species expression, reduced expression of the mitophagy mediators BNIP3 and BNIP3L, and impaired mitophagy. In agreement with this, IGF-1 robustly induced BNIP3 accumulation in mitochondria. Other active receptor tyrosine kinases could not compensate for reduced IGF-1R activity in mitochondrial protection, and MCF-7 cells with suppressed IGF-1R activity became highly dependent on glycolysis for survival. We conclude that IGF-1 signaling is essential for sustaining cancer cell viability by stimulating both mitochondrial biogenesis and turnover through BNIP3 induction. This core mitochondrial protective signal is likely to strongly influence responses to therapy and the phenotypic evolution of cancer. |
doi_str_mv | 10.1074/jbc.M117.792838 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5641874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820339326</els_id><sourcerecordid>1930476277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-c05a42da5583b5586245f72a11ed39248db717c79a97769bb424d6ef624fb9d33</originalsourceid><addsrcrecordid>eNp1kcFPHCEUxomp0e3q2VvDsZfZBYYZ4NKkMWpNbHrRxBth4M0sOgtbmF3jf1-2a017KAdI-H587_E-hC4oWVAi-PKps4vvlIqFUEzW8gjNKJF1VTf08QOaEcJopVgjT9HHnJ9IWVzRE3TKpGS0JWqGwm3I29GHavTPgIcUX6YV7o2dYsIUZz8EU9QB-4whZwiTNyPui7j2U7SrGFza33Q-DhAgF8wE91vcrMzwin3A1gQLCVsYx3yGjnszZjh_O-fo4frq_vJbdffj5vby611lG6KmypLGcOZM08i6K1vLeNMLZigFVyvGpesEFVYoo4RoVddxxl0LfeH6Trm6nqMvB9_NtluDs6XxZEa9SX5t0quOxut_leBXeog73bScSsGLwec3gxR_biFPeu3z_gsmQNxmTVVNuGiZEAVdHlCbYs4J-vcylOh9SrqkpPcp6UNK5cWnv7t75__EUgB1AKDMaOch6Ww9lDE6n8BO2kX_X_NfU6yj0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930476277</pqid></control><display><type>article</type><title>Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lyons, Amy ; Coleman, Michael ; Riis, Sarah ; Favre, Cedric ; O'Flanagan, Ciara H. ; Zhdanov, Alexander V. ; Papkovsky, Dmitri B. ; Hursting, Stephen D. ; O'Connor, Rosemary</creator><creatorcontrib>Lyons, Amy ; Coleman, Michael ; Riis, Sarah ; Favre, Cedric ; O'Flanagan, Ciara H. ; Zhdanov, Alexander V. ; Papkovsky, Dmitri B. ; Hursting, Stephen D. ; O'Connor, Rosemary</creatorcontrib><description>Mitochondrial activity and metabolic reprogramming influence the phenotype of cancer cells and resistance to targeted therapy. We previously established that an insulin-like growth factor 1 (IGF-1)-inducible mitochondrial UTP carrier (PNC1/SLC25A33) promotes cell growth. This prompted us to investigate whether IGF signaling is essential for mitochondrial maintenance in cancer cells and whether this contributes to therapy resistance. Here we show that IGF-1 stimulates mitochondrial biogenesis in a range of cell lines. In MCF-7 and ZR75.1 breast cancer cells, IGF-1 induces peroxisome proliferator–activated receptor γ coactivator 1β (PGC-1β) and PGC-1α–related coactivator (PRC). Suppression of PGC-1β and PRC with siRNA reverses the effects of IGF-1 and disrupts mitochondrial morphology and membrane potential. IGF-1 also induced expression of the redox regulator nuclear factor-erythroid-derived 2-like 2 (NFE2L2 alias NRF-2). Of note, MCF-7 cells with acquired resistance to an IGF-1 receptor (IGF-1R) tyrosine kinase inhibitor exhibited reduced expression of PGC-1β, PRC, and mitochondrial biogenesis. Interestingly, these cells exhibited mitochondrial dysfunction, indicated by reactive oxygen species expression, reduced expression of the mitophagy mediators BNIP3 and BNIP3L, and impaired mitophagy. In agreement with this, IGF-1 robustly induced BNIP3 accumulation in mitochondria. Other active receptor tyrosine kinases could not compensate for reduced IGF-1R activity in mitochondrial protection, and MCF-7 cells with suppressed IGF-1R activity became highly dependent on glycolysis for survival. We conclude that IGF-1 signaling is essential for sustaining cancer cell viability by stimulating both mitochondrial biogenesis and turnover through BNIP3 induction. This core mitochondrial protective signal is likely to strongly influence responses to therapy and the phenotypic evolution of cancer.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M117.792838</identifier><identifier>PMID: 28821609</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>cancer biology ; cancer therapy ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; cell metabolism ; cell signaling ; cell surface receptor ; Cell Survival - genetics ; drug resistance ; Humans ; insulin-like growth factor (IGF) ; Insulin-Like Growth Factor I - genetics ; Insulin-Like Growth Factor I - metabolism ; MCF-7 Cells ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial Dynamics ; Mitophagy ; Molecular Bases of Disease ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; NF-E2-Related Factor 2 - genetics ; NF-E2-Related Factor 2 - metabolism ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; Receptor, IGF Type 1 ; Receptors, Somatomedin - genetics ; Receptors, Somatomedin - metabolism ; RNA-Binding Proteins ; Signal Transduction ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism</subject><ispartof>The Journal of biological chemistry, 2017-10, Vol.292 (41), p.16983-16998</ispartof><rights>2017 © THE AUTHORS. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-c05a42da5583b5586245f72a11ed39248db717c79a97769bb424d6ef624fb9d33</citedby><cites>FETCH-LOGICAL-c509t-c05a42da5583b5586245f72a11ed39248db717c79a97769bb424d6ef624fb9d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641874/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641874/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28821609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyons, Amy</creatorcontrib><creatorcontrib>Coleman, Michael</creatorcontrib><creatorcontrib>Riis, Sarah</creatorcontrib><creatorcontrib>Favre, Cedric</creatorcontrib><creatorcontrib>O'Flanagan, Ciara H.</creatorcontrib><creatorcontrib>Zhdanov, Alexander V.</creatorcontrib><creatorcontrib>Papkovsky, Dmitri B.</creatorcontrib><creatorcontrib>Hursting, Stephen D.</creatorcontrib><creatorcontrib>O'Connor, Rosemary</creatorcontrib><title>Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Mitochondrial activity and metabolic reprogramming influence the phenotype of cancer cells and resistance to targeted therapy. We previously established that an insulin-like growth factor 1 (IGF-1)-inducible mitochondrial UTP carrier (PNC1/SLC25A33) promotes cell growth. This prompted us to investigate whether IGF signaling is essential for mitochondrial maintenance in cancer cells and whether this contributes to therapy resistance. Here we show that IGF-1 stimulates mitochondrial biogenesis in a range of cell lines. In MCF-7 and ZR75.1 breast cancer cells, IGF-1 induces peroxisome proliferator–activated receptor γ coactivator 1β (PGC-1β) and PGC-1α–related coactivator (PRC). Suppression of PGC-1β and PRC with siRNA reverses the effects of IGF-1 and disrupts mitochondrial morphology and membrane potential. IGF-1 also induced expression of the redox regulator nuclear factor-erythroid-derived 2-like 2 (NFE2L2 alias NRF-2). Of note, MCF-7 cells with acquired resistance to an IGF-1 receptor (IGF-1R) tyrosine kinase inhibitor exhibited reduced expression of PGC-1β, PRC, and mitochondrial biogenesis. Interestingly, these cells exhibited mitochondrial dysfunction, indicated by reactive oxygen species expression, reduced expression of the mitophagy mediators BNIP3 and BNIP3L, and impaired mitophagy. In agreement with this, IGF-1 robustly induced BNIP3 accumulation in mitochondria. Other active receptor tyrosine kinases could not compensate for reduced IGF-1R activity in mitochondrial protection, and MCF-7 cells with suppressed IGF-1R activity became highly dependent on glycolysis for survival. We conclude that IGF-1 signaling is essential for sustaining cancer cell viability by stimulating both mitochondrial biogenesis and turnover through BNIP3 induction. This core mitochondrial protective signal is likely to strongly influence responses to therapy and the phenotypic evolution of cancer.</description><subject>cancer biology</subject><subject>cancer therapy</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>cell metabolism</subject><subject>cell signaling</subject><subject>cell surface receptor</subject><subject>Cell Survival - genetics</subject><subject>drug resistance</subject><subject>Humans</subject><subject>insulin-like growth factor (IGF)</subject><subject>Insulin-Like Growth Factor I - genetics</subject><subject>Insulin-Like Growth Factor I - metabolism</subject><subject>MCF-7 Cells</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Dynamics</subject><subject>Mitophagy</subject><subject>Molecular Bases of Disease</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Receptor, IGF Type 1</subject><subject>Receptors, Somatomedin - genetics</subject><subject>Receptors, Somatomedin - metabolism</subject><subject>RNA-Binding Proteins</subject><subject>Signal Transduction</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFPHCEUxomp0e3q2VvDsZfZBYYZ4NKkMWpNbHrRxBth4M0sOgtbmF3jf1-2a017KAdI-H587_E-hC4oWVAi-PKps4vvlIqFUEzW8gjNKJF1VTf08QOaEcJopVgjT9HHnJ9IWVzRE3TKpGS0JWqGwm3I29GHavTPgIcUX6YV7o2dYsIUZz8EU9QB-4whZwiTNyPui7j2U7SrGFza33Q-DhAgF8wE91vcrMzwin3A1gQLCVsYx3yGjnszZjh_O-fo4frq_vJbdffj5vby611lG6KmypLGcOZM08i6K1vLeNMLZigFVyvGpesEFVYoo4RoVddxxl0LfeH6Trm6nqMvB9_NtluDs6XxZEa9SX5t0quOxut_leBXeog73bScSsGLwec3gxR_biFPeu3z_gsmQNxmTVVNuGiZEAVdHlCbYs4J-vcylOh9SrqkpPcp6UNK5cWnv7t75__EUgB1AKDMaOch6Ww9lDE6n8BO2kX_X_NfU6yj0A</recordid><startdate>20171013</startdate><enddate>20171013</enddate><creator>Lyons, Amy</creator><creator>Coleman, Michael</creator><creator>Riis, Sarah</creator><creator>Favre, Cedric</creator><creator>O'Flanagan, Ciara H.</creator><creator>Zhdanov, Alexander V.</creator><creator>Papkovsky, Dmitri B.</creator><creator>Hursting, Stephen D.</creator><creator>O'Connor, Rosemary</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171013</creationdate><title>Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells</title><author>Lyons, Amy ; Coleman, Michael ; Riis, Sarah ; Favre, Cedric ; O'Flanagan, Ciara H. ; Zhdanov, Alexander V. ; Papkovsky, Dmitri B. ; Hursting, Stephen D. ; O'Connor, Rosemary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-c05a42da5583b5586245f72a11ed39248db717c79a97769bb424d6ef624fb9d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>cancer biology</topic><topic>cancer therapy</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>cell metabolism</topic><topic>cell signaling</topic><topic>cell surface receptor</topic><topic>Cell Survival - genetics</topic><topic>drug resistance</topic><topic>Humans</topic><topic>insulin-like growth factor (IGF)</topic><topic>Insulin-Like Growth Factor I - genetics</topic><topic>Insulin-Like Growth Factor I - metabolism</topic><topic>MCF-7 Cells</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Dynamics</topic><topic>Mitophagy</topic><topic>Molecular Bases of Disease</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Receptor, IGF Type 1</topic><topic>Receptors, Somatomedin - genetics</topic><topic>Receptors, Somatomedin - metabolism</topic><topic>RNA-Binding Proteins</topic><topic>Signal Transduction</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyons, Amy</creatorcontrib><creatorcontrib>Coleman, Michael</creatorcontrib><creatorcontrib>Riis, Sarah</creatorcontrib><creatorcontrib>Favre, Cedric</creatorcontrib><creatorcontrib>O'Flanagan, Ciara H.</creatorcontrib><creatorcontrib>Zhdanov, Alexander V.</creatorcontrib><creatorcontrib>Papkovsky, Dmitri B.</creatorcontrib><creatorcontrib>Hursting, Stephen D.</creatorcontrib><creatorcontrib>O'Connor, Rosemary</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyons, Amy</au><au>Coleman, Michael</au><au>Riis, Sarah</au><au>Favre, Cedric</au><au>O'Flanagan, Ciara H.</au><au>Zhdanov, Alexander V.</au><au>Papkovsky, Dmitri B.</au><au>Hursting, Stephen D.</au><au>O'Connor, Rosemary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2017-10-13</date><risdate>2017</risdate><volume>292</volume><issue>41</issue><spage>16983</spage><epage>16998</epage><pages>16983-16998</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Mitochondrial activity and metabolic reprogramming influence the phenotype of cancer cells and resistance to targeted therapy. We previously established that an insulin-like growth factor 1 (IGF-1)-inducible mitochondrial UTP carrier (PNC1/SLC25A33) promotes cell growth. This prompted us to investigate whether IGF signaling is essential for mitochondrial maintenance in cancer cells and whether this contributes to therapy resistance. Here we show that IGF-1 stimulates mitochondrial biogenesis in a range of cell lines. In MCF-7 and ZR75.1 breast cancer cells, IGF-1 induces peroxisome proliferator–activated receptor γ coactivator 1β (PGC-1β) and PGC-1α–related coactivator (PRC). Suppression of PGC-1β and PRC with siRNA reverses the effects of IGF-1 and disrupts mitochondrial morphology and membrane potential. IGF-1 also induced expression of the redox regulator nuclear factor-erythroid-derived 2-like 2 (NFE2L2 alias NRF-2). Of note, MCF-7 cells with acquired resistance to an IGF-1 receptor (IGF-1R) tyrosine kinase inhibitor exhibited reduced expression of PGC-1β, PRC, and mitochondrial biogenesis. Interestingly, these cells exhibited mitochondrial dysfunction, indicated by reactive oxygen species expression, reduced expression of the mitophagy mediators BNIP3 and BNIP3L, and impaired mitophagy. In agreement with this, IGF-1 robustly induced BNIP3 accumulation in mitochondria. Other active receptor tyrosine kinases could not compensate for reduced IGF-1R activity in mitochondrial protection, and MCF-7 cells with suppressed IGF-1R activity became highly dependent on glycolysis for survival. We conclude that IGF-1 signaling is essential for sustaining cancer cell viability by stimulating both mitochondrial biogenesis and turnover through BNIP3 induction. This core mitochondrial protective signal is likely to strongly influence responses to therapy and the phenotypic evolution of cancer.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28821609</pmid><doi>10.1074/jbc.M117.792838</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2017-10, Vol.292 (41), p.16983-16998 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5641874 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | cancer biology cancer therapy Carrier Proteins - genetics Carrier Proteins - metabolism cell metabolism cell signaling cell surface receptor Cell Survival - genetics drug resistance Humans insulin-like growth factor (IGF) Insulin-Like Growth Factor I - genetics Insulin-Like Growth Factor I - metabolism MCF-7 Cells Membrane Proteins - genetics Membrane Proteins - metabolism mitochondria Mitochondria - genetics Mitochondria - metabolism Mitochondrial Dynamics Mitophagy Molecular Bases of Disease Neoplasm Proteins - genetics Neoplasm Proteins - metabolism Neoplasms - genetics Neoplasms - metabolism Neoplasms - pathology NF-E2-Related Factor 2 - genetics NF-E2-Related Factor 2 - metabolism Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins - metabolism Receptor, IGF Type 1 Receptors, Somatomedin - genetics Receptors, Somatomedin - metabolism RNA-Binding Proteins Signal Transduction Tumor Suppressor Proteins - genetics Tumor Suppressor Proteins - metabolism |
title | Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin-like%20growth%20factor%201%20signaling%20is%20essential%20for%20mitochondrial%20biogenesis%20and%20mitophagy%20in%20cancer%20cells&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Lyons,%20Amy&rft.date=2017-10-13&rft.volume=292&rft.issue=41&rft.spage=16983&rft.epage=16998&rft.pages=16983-16998&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M117.792838&rft_dat=%3Cproquest_pubme%3E1930476277%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930476277&rft_id=info:pmid/28821609&rft_els_id=S0021925820339326&rfr_iscdi=true |