EHD Proteins Cooperate to Generate Caveolar Clusters and to Maintain Caveolae during Repeated Mechanical Stress
Caveolae introduce flask-shaped convolutions into the plasma membrane and help to protect the plasma membrane from damage under stretch forces. The protein components that form the bulb of caveolae are increasingly well characterized, but less is known about the contribution of proteins that localiz...
Gespeichert in:
Veröffentlicht in: | Current biology 2017-10, Vol.27 (19), p.2951-2962.e5 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2962.e5 |
---|---|
container_issue | 19 |
container_start_page | 2951 |
container_title | Current biology |
container_volume | 27 |
creator | Yeow, Ivana Howard, Gillian Chadwick, Jessica Mendoza-Topaz, Carolina Hansen, Carsten G. Nichols, Benjamin J. Shvets, Elena |
description | Caveolae introduce flask-shaped convolutions into the plasma membrane and help to protect the plasma membrane from damage under stretch forces. The protein components that form the bulb of caveolae are increasingly well characterized, but less is known about the contribution of proteins that localize to the constricted neck. Here we make extensive use of multiple CRISPR/Cas9-generated gene knockout and knockin cell lines to investigate the role of Eps15 Homology Domain (EHD) proteins at the neck of caveolae. We show that EHD1, EHD2, and EHD4 are recruited to caveolae. Recruitment of the other EHDs increases markedly when EHD2, which has been previously detected at caveolae, is absent. Construction of knockout cell lines lacking EHDs 1, 2, and 4 confirms this apparent functional redundancy. Two striking sets of phenotypes are observed in EHD1,2,4 knockout cells: (1) the characteristic clustering of caveolae into higher-order assemblies is absent; and (2) when the EHD1,2,4 knockout cells are subjected to prolonged cycles of stretch forces, caveolae are destabilized and the plasma membrane is prone to rupture. Our data identify the first molecular components that act to cluster caveolae into a membrane ultrastructure with the potential to extend stretch-buffering capacity and support a revised model for the function of EHDs at the caveolar neck.
•EHD1, 2, and 4 are all recruited to caveolae•EHD proteins promote the formation of clustered arrays of caveolae•EHD proteins are required for morphogenesis of caveolae under repeated stretch forces•Loss of EHD proteins increases stretch-induced damage to the plasma membrane
Yeow et al. apply gene-editing approaches to show that members of the EHD protein family are recruited to plasma membrane invaginations termed caveolae. The EHD proteins act to promote clustering of caveolae into higher-order assemblies and also to protect the plasma membrane from rupture under stretch forces. |
doi_str_mv | 10.1016/j.cub.2017.07.047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5640515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096098221730951X</els_id><sourcerecordid>1942711883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-f51de4a7b2dd2dc97b930c43ceda5aa73ea174b12f49d8d33dbceae7fa1253253</originalsourceid><addsrcrecordid>eNp9kVFrFDEUhYModm39Ab5IHn2ZNclkNjMIgkxrK7Qotn0Od5I7bZbZZE0yC_57s2xb7EvhhhvId84N9xDygbMlZ3z1eb0087AUjKslKyXVK7LgreoqJmXzmixYt2JV1wpxRN6ltGaMi7ZbvSVHpcmatd2ChLOLU_orhozOJ9qHsMUIGWkO9Bz94d7DDsMEkfbTnDLGRMHbPXEFzudyHgmkdo7O39HfuMWitPQKzT14Z2Ci1zliSifkzQhTwvcP_Zjcfj-76S-qy5_nP_pvl5VpuMrV2HCLEtQgrBXWdGroamZkbdBCA6BqBK7kwMUoO9vauraDQUA1AhdNXeqYfD34budhg9agzxEmvY1uA_GvDuD08xfv7vVd2OlmJVnD9wafHgxi-DNjynrjksFpAo9hTpp3UijO27YuKD-gJoaUIo5PYzjT-6D0Wpeg9D4ozUpJVTQf___fk-IxmQJ8OQBYtrRzGHUyDn1ZgItosrbBvWD_D9CMpuA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942711883</pqid></control><display><type>article</type><title>EHD Proteins Cooperate to Generate Caveolar Clusters and to Maintain Caveolae during Repeated Mechanical Stress</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yeow, Ivana ; Howard, Gillian ; Chadwick, Jessica ; Mendoza-Topaz, Carolina ; Hansen, Carsten G. ; Nichols, Benjamin J. ; Shvets, Elena</creator><creatorcontrib>Yeow, Ivana ; Howard, Gillian ; Chadwick, Jessica ; Mendoza-Topaz, Carolina ; Hansen, Carsten G. ; Nichols, Benjamin J. ; Shvets, Elena</creatorcontrib><description>Caveolae introduce flask-shaped convolutions into the plasma membrane and help to protect the plasma membrane from damage under stretch forces. The protein components that form the bulb of caveolae are increasingly well characterized, but less is known about the contribution of proteins that localize to the constricted neck. Here we make extensive use of multiple CRISPR/Cas9-generated gene knockout and knockin cell lines to investigate the role of Eps15 Homology Domain (EHD) proteins at the neck of caveolae. We show that EHD1, EHD2, and EHD4 are recruited to caveolae. Recruitment of the other EHDs increases markedly when EHD2, which has been previously detected at caveolae, is absent. Construction of knockout cell lines lacking EHDs 1, 2, and 4 confirms this apparent functional redundancy. Two striking sets of phenotypes are observed in EHD1,2,4 knockout cells: (1) the characteristic clustering of caveolae into higher-order assemblies is absent; and (2) when the EHD1,2,4 knockout cells are subjected to prolonged cycles of stretch forces, caveolae are destabilized and the plasma membrane is prone to rupture. Our data identify the first molecular components that act to cluster caveolae into a membrane ultrastructure with the potential to extend stretch-buffering capacity and support a revised model for the function of EHDs at the caveolar neck.
•EHD1, 2, and 4 are all recruited to caveolae•EHD proteins promote the formation of clustered arrays of caveolae•EHD proteins are required for morphogenesis of caveolae under repeated stretch forces•Loss of EHD proteins increases stretch-induced damage to the plasma membrane
Yeow et al. apply gene-editing approaches to show that members of the EHD protein family are recruited to plasma membrane invaginations termed caveolae. The EHD proteins act to promote clustering of caveolae into higher-order assemblies and also to protect the plasma membrane from rupture under stretch forces.</description><identifier>ISSN: 0960-9822</identifier><identifier>ISSN: 1879-0445</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2017.07.047</identifier><identifier>PMID: 28943089</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biomechanical Phenomena ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; caveolae ; Caveolae - physiology ; caveolin ; cavin ; cell ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; EHD2 ; membrane ; Mice ; NIH 3T3 Cells ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Stress, Mechanical ; stretch ; Vesicular Transport Proteins - genetics ; Vesicular Transport Proteins - metabolism</subject><ispartof>Current biology, 2017-10, Vol.27 (19), p.2951-2962.e5</ispartof><rights>2017 MRC Laboratory of Molecular Biology</rights><rights>Copyright © 2017 MRC Laboratory of Molecular Biology. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2017 MRC Laboratory of Molecular Biology 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-f51de4a7b2dd2dc97b930c43ceda5aa73ea174b12f49d8d33dbceae7fa1253253</citedby><cites>FETCH-LOGICAL-c517t-f51de4a7b2dd2dc97b930c43ceda5aa73ea174b12f49d8d33dbceae7fa1253253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cub.2017.07.047$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28943089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeow, Ivana</creatorcontrib><creatorcontrib>Howard, Gillian</creatorcontrib><creatorcontrib>Chadwick, Jessica</creatorcontrib><creatorcontrib>Mendoza-Topaz, Carolina</creatorcontrib><creatorcontrib>Hansen, Carsten G.</creatorcontrib><creatorcontrib>Nichols, Benjamin J.</creatorcontrib><creatorcontrib>Shvets, Elena</creatorcontrib><title>EHD Proteins Cooperate to Generate Caveolar Clusters and to Maintain Caveolae during Repeated Mechanical Stress</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Caveolae introduce flask-shaped convolutions into the plasma membrane and help to protect the plasma membrane from damage under stretch forces. The protein components that form the bulb of caveolae are increasingly well characterized, but less is known about the contribution of proteins that localize to the constricted neck. Here we make extensive use of multiple CRISPR/Cas9-generated gene knockout and knockin cell lines to investigate the role of Eps15 Homology Domain (EHD) proteins at the neck of caveolae. We show that EHD1, EHD2, and EHD4 are recruited to caveolae. Recruitment of the other EHDs increases markedly when EHD2, which has been previously detected at caveolae, is absent. Construction of knockout cell lines lacking EHDs 1, 2, and 4 confirms this apparent functional redundancy. Two striking sets of phenotypes are observed in EHD1,2,4 knockout cells: (1) the characteristic clustering of caveolae into higher-order assemblies is absent; and (2) when the EHD1,2,4 knockout cells are subjected to prolonged cycles of stretch forces, caveolae are destabilized and the plasma membrane is prone to rupture. Our data identify the first molecular components that act to cluster caveolae into a membrane ultrastructure with the potential to extend stretch-buffering capacity and support a revised model for the function of EHDs at the caveolar neck.
•EHD1, 2, and 4 are all recruited to caveolae•EHD proteins promote the formation of clustered arrays of caveolae•EHD proteins are required for morphogenesis of caveolae under repeated stretch forces•Loss of EHD proteins increases stretch-induced damage to the plasma membrane
Yeow et al. apply gene-editing approaches to show that members of the EHD protein family are recruited to plasma membrane invaginations termed caveolae. The EHD proteins act to promote clustering of caveolae into higher-order assemblies and also to protect the plasma membrane from rupture under stretch forces.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>caveolae</subject><subject>Caveolae - physiology</subject><subject>caveolin</subject><subject>cavin</subject><subject>cell</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>EHD2</subject><subject>membrane</subject><subject>Mice</subject><subject>NIH 3T3 Cells</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Stress, Mechanical</subject><subject>stretch</subject><subject>Vesicular Transport Proteins - genetics</subject><subject>Vesicular Transport Proteins - metabolism</subject><issn>0960-9822</issn><issn>1879-0445</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kVFrFDEUhYModm39Ab5IHn2ZNclkNjMIgkxrK7Qotn0Od5I7bZbZZE0yC_57s2xb7EvhhhvId84N9xDygbMlZ3z1eb0087AUjKslKyXVK7LgreoqJmXzmixYt2JV1wpxRN6ltGaMi7ZbvSVHpcmatd2ChLOLU_orhozOJ9qHsMUIGWkO9Bz94d7DDsMEkfbTnDLGRMHbPXEFzudyHgmkdo7O39HfuMWitPQKzT14Z2Ci1zliSifkzQhTwvcP_Zjcfj-76S-qy5_nP_pvl5VpuMrV2HCLEtQgrBXWdGroamZkbdBCA6BqBK7kwMUoO9vauraDQUA1AhdNXeqYfD34budhg9agzxEmvY1uA_GvDuD08xfv7vVd2OlmJVnD9wafHgxi-DNjynrjksFpAo9hTpp3UijO27YuKD-gJoaUIo5PYzjT-6D0Wpeg9D4ozUpJVTQf___fk-IxmQJ8OQBYtrRzGHUyDn1ZgItosrbBvWD_D9CMpuA</recordid><startdate>20171009</startdate><enddate>20171009</enddate><creator>Yeow, Ivana</creator><creator>Howard, Gillian</creator><creator>Chadwick, Jessica</creator><creator>Mendoza-Topaz, Carolina</creator><creator>Hansen, Carsten G.</creator><creator>Nichols, Benjamin J.</creator><creator>Shvets, Elena</creator><general>Elsevier Ltd</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171009</creationdate><title>EHD Proteins Cooperate to Generate Caveolar Clusters and to Maintain Caveolae during Repeated Mechanical Stress</title><author>Yeow, Ivana ; Howard, Gillian ; Chadwick, Jessica ; Mendoza-Topaz, Carolina ; Hansen, Carsten G. ; Nichols, Benjamin J. ; Shvets, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-f51de4a7b2dd2dc97b930c43ceda5aa73ea174b12f49d8d33dbceae7fa1253253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>caveolae</topic><topic>Caveolae - physiology</topic><topic>caveolin</topic><topic>cavin</topic><topic>cell</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>EHD2</topic><topic>membrane</topic><topic>Mice</topic><topic>NIH 3T3 Cells</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Stress, Mechanical</topic><topic>stretch</topic><topic>Vesicular Transport Proteins - genetics</topic><topic>Vesicular Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeow, Ivana</creatorcontrib><creatorcontrib>Howard, Gillian</creatorcontrib><creatorcontrib>Chadwick, Jessica</creatorcontrib><creatorcontrib>Mendoza-Topaz, Carolina</creatorcontrib><creatorcontrib>Hansen, Carsten G.</creatorcontrib><creatorcontrib>Nichols, Benjamin J.</creatorcontrib><creatorcontrib>Shvets, Elena</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeow, Ivana</au><au>Howard, Gillian</au><au>Chadwick, Jessica</au><au>Mendoza-Topaz, Carolina</au><au>Hansen, Carsten G.</au><au>Nichols, Benjamin J.</au><au>Shvets, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EHD Proteins Cooperate to Generate Caveolar Clusters and to Maintain Caveolae during Repeated Mechanical Stress</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2017-10-09</date><risdate>2017</risdate><volume>27</volume><issue>19</issue><spage>2951</spage><epage>2962.e5</epage><pages>2951-2962.e5</pages><issn>0960-9822</issn><issn>1879-0445</issn><eissn>1879-0445</eissn><abstract>Caveolae introduce flask-shaped convolutions into the plasma membrane and help to protect the plasma membrane from damage under stretch forces. The protein components that form the bulb of caveolae are increasingly well characterized, but less is known about the contribution of proteins that localize to the constricted neck. Here we make extensive use of multiple CRISPR/Cas9-generated gene knockout and knockin cell lines to investigate the role of Eps15 Homology Domain (EHD) proteins at the neck of caveolae. We show that EHD1, EHD2, and EHD4 are recruited to caveolae. Recruitment of the other EHDs increases markedly when EHD2, which has been previously detected at caveolae, is absent. Construction of knockout cell lines lacking EHDs 1, 2, and 4 confirms this apparent functional redundancy. Two striking sets of phenotypes are observed in EHD1,2,4 knockout cells: (1) the characteristic clustering of caveolae into higher-order assemblies is absent; and (2) when the EHD1,2,4 knockout cells are subjected to prolonged cycles of stretch forces, caveolae are destabilized and the plasma membrane is prone to rupture. Our data identify the first molecular components that act to cluster caveolae into a membrane ultrastructure with the potential to extend stretch-buffering capacity and support a revised model for the function of EHDs at the caveolar neck.
•EHD1, 2, and 4 are all recruited to caveolae•EHD proteins promote the formation of clustered arrays of caveolae•EHD proteins are required for morphogenesis of caveolae under repeated stretch forces•Loss of EHD proteins increases stretch-induced damage to the plasma membrane
Yeow et al. apply gene-editing approaches to show that members of the EHD protein family are recruited to plasma membrane invaginations termed caveolae. The EHD proteins act to promote clustering of caveolae into higher-order assemblies and also to protect the plasma membrane from rupture under stretch forces.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28943089</pmid><doi>10.1016/j.cub.2017.07.047</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-9822 |
ispartof | Current biology, 2017-10, Vol.27 (19), p.2951-2962.e5 |
issn | 0960-9822 1879-0445 1879-0445 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5640515 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Animals Biomechanical Phenomena Carrier Proteins - genetics Carrier Proteins - metabolism caveolae Caveolae - physiology caveolin cavin cell DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism EHD2 membrane Mice NIH 3T3 Cells Nuclear Proteins - genetics Nuclear Proteins - metabolism Stress, Mechanical stretch Vesicular Transport Proteins - genetics Vesicular Transport Proteins - metabolism |
title | EHD Proteins Cooperate to Generate Caveolar Clusters and to Maintain Caveolae during Repeated Mechanical Stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EHD%20Proteins%20Cooperate%20to%20Generate%20Caveolar%20Clusters%20and%20to%20Maintain%20Caveolae%20during%20Repeated%20Mechanical%20Stress&rft.jtitle=Current%20biology&rft.au=Yeow,%20Ivana&rft.date=2017-10-09&rft.volume=27&rft.issue=19&rft.spage=2951&rft.epage=2962.e5&rft.pages=2951-2962.e5&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2017.07.047&rft_dat=%3Cproquest_pubme%3E1942711883%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942711883&rft_id=info:pmid/28943089&rft_els_id=S096098221730951X&rfr_iscdi=true |