Ubiquitin Linkage-Specific Affimers Reveal Insights into K6-Linked Ubiquitin Signaling

Several ubiquitin chain types have remained unstudied, mainly because tools and techniques to detect these posttranslational modifications are scarce. Linkage-specific antibodies have shaped our understanding of the roles and dynamics of polyubiquitin signals but are available for only five out of e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2017-10, Vol.68 (1), p.233-246.e5
Hauptverfasser: Michel, Martin A., Swatek, Kirby N., Hospenthal, Manuela K., Komander, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 246.e5
container_issue 1
container_start_page 233
container_title Molecular cell
container_volume 68
creator Michel, Martin A.
Swatek, Kirby N.
Hospenthal, Manuela K.
Komander, David
description Several ubiquitin chain types have remained unstudied, mainly because tools and techniques to detect these posttranslational modifications are scarce. Linkage-specific antibodies have shaped our understanding of the roles and dynamics of polyubiquitin signals but are available for only five out of eight linkage types. We here characterize K6- and K33-linkage-specific “affimer” reagents as high-affinity ubiquitin interactors. Crystal structures of affimers bound to their cognate chain types reveal mechanisms of specificity and a K11 cross-reactivity in the K33 affimer. Structure-guided improvements yield superior affinity reagents suitable for western blotting, confocal fluorescence microscopy and pull-down applications. This allowed us to identify RNF144A and RNF144B as E3 ligases that assemble K6-, K11-, and K48-linked polyubiquitin in vitro. A protocol to enrich K6-ubiquitinated proteins from cells identifies HUWE1 as a main E3 ligase for this chain type, and we show that mitofusin-2 is modified with K6-linked polyubiquitin in a HUWE1-dependent manner. [Display omitted] •Respective linkage-specific affimers recognize K6- or K33-/K11-linked chains•Structures of affimer:diUb complexes reveal mechanisms of linkage specificity•Improved affimers can be used in western blotting, confocal microscopy, and pull-downs•Pull-downs with K6-specific affimers reveal HUWE1 to be a major K6 ligase in cells Michel et al. describe linkage-specific tools for the study of atypical K6 and K33/K11 ubiquitin linkages. Affimers have applications in western blotting, confocal microscopy, and pull-downs. Using a K6-specific affimer, they reveal that HUWE1 is a major source of cellular K6 chains and decorates Mfn2 with K6 chains.
doi_str_mv 10.1016/j.molcel.2017.08.020
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5640506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276517306172</els_id><sourcerecordid>2067276796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-bdb9e9586d2bc1887014bbd30637719019d1a837626159297b40d38861eec4693</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRCIloV_gFCOXBJsx_HHBamqClSshEQpV8uxJ-ksibO1syvx78lqlxYucJqR5r03M-8R8prRilEm322qcRo8DBWnTFVUV5TTJ-ScUaNKwaR4euq5ks0ZeZHzhlImGm2ekzOujahrxs_J99sW73c4YyzWGH-4HsqbLXjs0BcXXYcjpFx8hT24obiOGfu7ORcY56n4LMsDA0LxKHGDfXQDxv4leda5IcOrU12R2w9X3y4_lesvH68vL9alF0bOZRtaA6bRMvDWM63VcmHbhprKWilmKDOBOV0rySVrDDeqFTTUWksG4IU09Yq8P-pud-0IwUOckxvsNuHo0k87ObR_TyLe2X7a20YK2ixrVuTtSSBN9zvIsx0xL64OLsK0y5ZTqRYHlfk_lBnBFaO8PkDFEerTlHOC7uEiRu0hPbuxx_TsIT1LtV3SW2hv_vzmgfQ7rsd3YfF0j5Bs9gjRQ8AEfrZhwn9v-AXvVKzK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942710236</pqid></control><display><type>article</type><title>Ubiquitin Linkage-Specific Affimers Reveal Insights into K6-Linked Ubiquitin Signaling</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Michel, Martin A. ; Swatek, Kirby N. ; Hospenthal, Manuela K. ; Komander, David</creator><creatorcontrib>Michel, Martin A. ; Swatek, Kirby N. ; Hospenthal, Manuela K. ; Komander, David</creatorcontrib><description>Several ubiquitin chain types have remained unstudied, mainly because tools and techniques to detect these posttranslational modifications are scarce. Linkage-specific antibodies have shaped our understanding of the roles and dynamics of polyubiquitin signals but are available for only five out of eight linkage types. We here characterize K6- and K33-linkage-specific “affimer” reagents as high-affinity ubiquitin interactors. Crystal structures of affimers bound to their cognate chain types reveal mechanisms of specificity and a K11 cross-reactivity in the K33 affimer. Structure-guided improvements yield superior affinity reagents suitable for western blotting, confocal fluorescence microscopy and pull-down applications. This allowed us to identify RNF144A and RNF144B as E3 ligases that assemble K6-, K11-, and K48-linked polyubiquitin in vitro. A protocol to enrich K6-ubiquitinated proteins from cells identifies HUWE1 as a main E3 ligase for this chain type, and we show that mitofusin-2 is modified with K6-linked polyubiquitin in a HUWE1-dependent manner. [Display omitted] •Respective linkage-specific affimers recognize K6- or K33-/K11-linked chains•Structures of affimer:diUb complexes reveal mechanisms of linkage specificity•Improved affimers can be used in western blotting, confocal microscopy, and pull-downs•Pull-downs with K6-specific affimers reveal HUWE1 to be a major K6 ligase in cells Michel et al. describe linkage-specific tools for the study of atypical K6 and K33/K11 ubiquitin linkages. Affimers have applications in western blotting, confocal microscopy, and pull-downs. Using a K6-specific affimer, they reveal that HUWE1 is a major source of cellular K6 chains and decorates Mfn2 with K6 chains.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2017.08.020</identifier><identifier>PMID: 28943312</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>affimer ; Amino Acid Motifs ; antibodies ; Binding Sites ; Carrier Proteins - chemistry ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Line, Tumor ; Cloning, Molecular ; cross reaction ; crystal structure ; Crystallography, X-Ray ; Escherichia coli - genetics ; Escherichia coli - metabolism ; fluorescence microscopy ; Gene Expression ; GTP Phosphohydrolases - chemistry ; GTP Phosphohydrolases - genetics ; GTP Phosphohydrolases - metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; HUWE1 ; Kinetics ; Lys6-linked ubiquitin chains ; Lysine - chemistry ; Lysine - metabolism ; Mfn2 ; microscale thermophoresis ; Mitochondrial Proteins - chemistry ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; mitophagy ; Models, Molecular ; Molecular Probes - chemistry ; Parkin ; post-translational modification ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Processing, Post-Translational ; Protein Structure, Secondary ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Signal Transduction ; Substrate Specificity ; Tumor Suppressor Proteins ; ubiquitin ; Ubiquitin - chemistry ; Ubiquitin - genetics ; Ubiquitin - metabolism ; ubiquitin-protein ligase ; Ubiquitin-Protein Ligases - chemistry ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination ; Western blotting ; X-ray crystallography</subject><ispartof>Molecular cell, 2017-10, Vol.68 (1), p.233-246.e5</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2017 The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-bdb9e9586d2bc1887014bbd30637719019d1a837626159297b40d38861eec4693</citedby><cites>FETCH-LOGICAL-c496t-bdb9e9586d2bc1887014bbd30637719019d1a837626159297b40d38861eec4693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2017.08.020$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28943312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Michel, Martin A.</creatorcontrib><creatorcontrib>Swatek, Kirby N.</creatorcontrib><creatorcontrib>Hospenthal, Manuela K.</creatorcontrib><creatorcontrib>Komander, David</creatorcontrib><title>Ubiquitin Linkage-Specific Affimers Reveal Insights into K6-Linked Ubiquitin Signaling</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Several ubiquitin chain types have remained unstudied, mainly because tools and techniques to detect these posttranslational modifications are scarce. Linkage-specific antibodies have shaped our understanding of the roles and dynamics of polyubiquitin signals but are available for only five out of eight linkage types. We here characterize K6- and K33-linkage-specific “affimer” reagents as high-affinity ubiquitin interactors. Crystal structures of affimers bound to their cognate chain types reveal mechanisms of specificity and a K11 cross-reactivity in the K33 affimer. Structure-guided improvements yield superior affinity reagents suitable for western blotting, confocal fluorescence microscopy and pull-down applications. This allowed us to identify RNF144A and RNF144B as E3 ligases that assemble K6-, K11-, and K48-linked polyubiquitin in vitro. A protocol to enrich K6-ubiquitinated proteins from cells identifies HUWE1 as a main E3 ligase for this chain type, and we show that mitofusin-2 is modified with K6-linked polyubiquitin in a HUWE1-dependent manner. [Display omitted] •Respective linkage-specific affimers recognize K6- or K33-/K11-linked chains•Structures of affimer:diUb complexes reveal mechanisms of linkage specificity•Improved affimers can be used in western blotting, confocal microscopy, and pull-downs•Pull-downs with K6-specific affimers reveal HUWE1 to be a major K6 ligase in cells Michel et al. describe linkage-specific tools for the study of atypical K6 and K33/K11 ubiquitin linkages. Affimers have applications in western blotting, confocal microscopy, and pull-downs. Using a K6-specific affimer, they reveal that HUWE1 is a major source of cellular K6 chains and decorates Mfn2 with K6 chains.</description><subject>affimer</subject><subject>Amino Acid Motifs</subject><subject>antibodies</subject><subject>Binding Sites</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cloning, Molecular</subject><subject>cross reaction</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>fluorescence microscopy</subject><subject>Gene Expression</subject><subject>GTP Phosphohydrolases - chemistry</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>HUWE1</subject><subject>Kinetics</subject><subject>Lys6-linked ubiquitin chains</subject><subject>Lysine - chemistry</subject><subject>Lysine - metabolism</subject><subject>Mfn2</subject><subject>microscale thermophoresis</subject><subject>Mitochondrial Proteins - chemistry</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>mitophagy</subject><subject>Models, Molecular</subject><subject>Molecular Probes - chemistry</subject><subject>Parkin</subject><subject>post-translational modification</subject><subject>Protein Binding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein Structure, Secondary</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Signal Transduction</subject><subject>Substrate Specificity</subject><subject>Tumor Suppressor Proteins</subject><subject>ubiquitin</subject><subject>Ubiquitin - chemistry</subject><subject>Ubiquitin - genetics</subject><subject>Ubiquitin - metabolism</subject><subject>ubiquitin-protein ligase</subject><subject>Ubiquitin-Protein Ligases - chemistry</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><subject>Western blotting</subject><subject>X-ray crystallography</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAQtRCIloV_gFCOXBJsx_HHBamqClSshEQpV8uxJ-ksibO1syvx78lqlxYucJqR5r03M-8R8prRilEm322qcRo8DBWnTFVUV5TTJ-ScUaNKwaR4euq5ks0ZeZHzhlImGm2ekzOujahrxs_J99sW73c4YyzWGH-4HsqbLXjs0BcXXYcjpFx8hT24obiOGfu7ORcY56n4LMsDA0LxKHGDfXQDxv4leda5IcOrU12R2w9X3y4_lesvH68vL9alF0bOZRtaA6bRMvDWM63VcmHbhprKWilmKDOBOV0rySVrDDeqFTTUWksG4IU09Yq8P-pud-0IwUOckxvsNuHo0k87ObR_TyLe2X7a20YK2ixrVuTtSSBN9zvIsx0xL64OLsK0y5ZTqRYHlfk_lBnBFaO8PkDFEerTlHOC7uEiRu0hPbuxx_TsIT1LtV3SW2hv_vzmgfQ7rsd3YfF0j5Bs9gjRQ8AEfrZhwn9v-AXvVKzK</recordid><startdate>20171005</startdate><enddate>20171005</enddate><creator>Michel, Martin A.</creator><creator>Swatek, Kirby N.</creator><creator>Hospenthal, Manuela K.</creator><creator>Komander, David</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20171005</creationdate><title>Ubiquitin Linkage-Specific Affimers Reveal Insights into K6-Linked Ubiquitin Signaling</title><author>Michel, Martin A. ; Swatek, Kirby N. ; Hospenthal, Manuela K. ; Komander, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-bdb9e9586d2bc1887014bbd30637719019d1a837626159297b40d38861eec4693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>affimer</topic><topic>Amino Acid Motifs</topic><topic>antibodies</topic><topic>Binding Sites</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cloning, Molecular</topic><topic>cross reaction</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>fluorescence microscopy</topic><topic>Gene Expression</topic><topic>GTP Phosphohydrolases - chemistry</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>HUWE1</topic><topic>Kinetics</topic><topic>Lys6-linked ubiquitin chains</topic><topic>Lysine - chemistry</topic><topic>Lysine - metabolism</topic><topic>Mfn2</topic><topic>microscale thermophoresis</topic><topic>Mitochondrial Proteins - chemistry</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>mitophagy</topic><topic>Models, Molecular</topic><topic>Molecular Probes - chemistry</topic><topic>Parkin</topic><topic>post-translational modification</topic><topic>Protein Binding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein Structure, Secondary</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Signal Transduction</topic><topic>Substrate Specificity</topic><topic>Tumor Suppressor Proteins</topic><topic>ubiquitin</topic><topic>Ubiquitin - chemistry</topic><topic>Ubiquitin - genetics</topic><topic>Ubiquitin - metabolism</topic><topic>ubiquitin-protein ligase</topic><topic>Ubiquitin-Protein Ligases - chemistry</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><topic>Western blotting</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michel, Martin A.</creatorcontrib><creatorcontrib>Swatek, Kirby N.</creatorcontrib><creatorcontrib>Hospenthal, Manuela K.</creatorcontrib><creatorcontrib>Komander, David</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michel, Martin A.</au><au>Swatek, Kirby N.</au><au>Hospenthal, Manuela K.</au><au>Komander, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ubiquitin Linkage-Specific Affimers Reveal Insights into K6-Linked Ubiquitin Signaling</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2017-10-05</date><risdate>2017</risdate><volume>68</volume><issue>1</issue><spage>233</spage><epage>246.e5</epage><pages>233-246.e5</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Several ubiquitin chain types have remained unstudied, mainly because tools and techniques to detect these posttranslational modifications are scarce. Linkage-specific antibodies have shaped our understanding of the roles and dynamics of polyubiquitin signals but are available for only five out of eight linkage types. We here characterize K6- and K33-linkage-specific “affimer” reagents as high-affinity ubiquitin interactors. Crystal structures of affimers bound to their cognate chain types reveal mechanisms of specificity and a K11 cross-reactivity in the K33 affimer. Structure-guided improvements yield superior affinity reagents suitable for western blotting, confocal fluorescence microscopy and pull-down applications. This allowed us to identify RNF144A and RNF144B as E3 ligases that assemble K6-, K11-, and K48-linked polyubiquitin in vitro. A protocol to enrich K6-ubiquitinated proteins from cells identifies HUWE1 as a main E3 ligase for this chain type, and we show that mitofusin-2 is modified with K6-linked polyubiquitin in a HUWE1-dependent manner. [Display omitted] •Respective linkage-specific affimers recognize K6- or K33-/K11-linked chains•Structures of affimer:diUb complexes reveal mechanisms of linkage specificity•Improved affimers can be used in western blotting, confocal microscopy, and pull-downs•Pull-downs with K6-specific affimers reveal HUWE1 to be a major K6 ligase in cells Michel et al. describe linkage-specific tools for the study of atypical K6 and K33/K11 ubiquitin linkages. Affimers have applications in western blotting, confocal microscopy, and pull-downs. Using a K6-specific affimer, they reveal that HUWE1 is a major source of cellular K6 chains and decorates Mfn2 with K6 chains.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28943312</pmid><doi>10.1016/j.molcel.2017.08.020</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2017-10, Vol.68 (1), p.233-246.e5
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5640506
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects affimer
Amino Acid Motifs
antibodies
Binding Sites
Carrier Proteins - chemistry
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Line, Tumor
Cloning, Molecular
cross reaction
crystal structure
Crystallography, X-Ray
Escherichia coli - genetics
Escherichia coli - metabolism
fluorescence microscopy
Gene Expression
GTP Phosphohydrolases - chemistry
GTP Phosphohydrolases - genetics
GTP Phosphohydrolases - metabolism
HEK293 Cells
HeLa Cells
Humans
HUWE1
Kinetics
Lys6-linked ubiquitin chains
Lysine - chemistry
Lysine - metabolism
Mfn2
microscale thermophoresis
Mitochondrial Proteins - chemistry
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
mitophagy
Models, Molecular
Molecular Probes - chemistry
Parkin
post-translational modification
Protein Binding
Protein Interaction Domains and Motifs
Protein Processing, Post-Translational
Protein Structure, Secondary
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Signal Transduction
Substrate Specificity
Tumor Suppressor Proteins
ubiquitin
Ubiquitin - chemistry
Ubiquitin - genetics
Ubiquitin - metabolism
ubiquitin-protein ligase
Ubiquitin-Protein Ligases - chemistry
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Western blotting
X-ray crystallography
title Ubiquitin Linkage-Specific Affimers Reveal Insights into K6-Linked Ubiquitin Signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ubiquitin%20Linkage-Specific%20Affimers%20Reveal%20Insights%20into%20K6-Linked%20Ubiquitin%20Signaling&rft.jtitle=Molecular%20cell&rft.au=Michel,%20Martin%20A.&rft.date=2017-10-05&rft.volume=68&rft.issue=1&rft.spage=233&rft.epage=246.e5&rft.pages=233-246.e5&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2017.08.020&rft_dat=%3Cproquest_pubme%3E2067276796%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942710236&rft_id=info:pmid/28943312&rft_els_id=S1097276517306172&rfr_iscdi=true