Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip
An in vitro model of the human kidney glomerulus—the major site of blood filtration—could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possi...
Gespeichert in:
Veröffentlicht in: | Nature biomedical engineering 2017-05, Vol.1 (5), Article 0069 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Nature biomedical engineering |
container_volume | 1 |
creator | Musah, Samira Mammoto, Akiko Ferrante, Thomas C. Jeanty, Sauveur S. F. Hirano-Kobayashi, Mariko Mammoto, Tadanori Roberts, Kristen Chung, Seyoon Novak, Richard Ingram, Miles Fatanat-Didar, Tohid Koshy, Sandeep Weaver, James C. Church, George M. Ingber, Donald E. |
description | An
in vitro
model of the human kidney glomerulus—the major site of blood filtration—could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possible because of the lack of functional human podocytes—the cells that regulate selective permeability in the glomerulus. Here, we demonstrate an efficient (over 90%) and chemically defined method for directing the differentiation of human induced pluripotent stem (hiPS) cells into podocytes that express markers for a mature phenotype (nephrin
+
, WT1
+
, podocin
+
, PAX2
−
) and that exhibit primary and secondary foot processes. We also show that the hiPS-cell-derived podocytes produce glomerular basement-membrane collagen and recapitulate the natural tissue–tissue interface of the glomerulus, as well as the differential clearance of albumin and inulin, when co-cultured with human glomerular endothelial cells in an organ-on-a-chip microfluidic device. The glomerulus-on-a-chip also mimics adriamycin-induced albuminuria and podocyte injury. This
in vitro
model of human glomerular function with mature human podocytes may facilitate drug development and personalized-medicine applications.
An efficient and chemically defined protocol for the differentiation of human induced pluripotent stem cells into podocytes enables the recapitulation of the differential clearance of the human kidney glomerulus in an organ-on-a-chip. |
doi_str_mv | 10.1038/s41551-017-0069 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5639718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1952104981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-8f1970a405a041c41de5420481b13a964e2b127d348873921ed23dd8ede095a03</originalsourceid><addsrcrecordid>eNp1kctrFTEUxgdRbGm7dicDbtzE5jUzyUaQ4gsq3VjoLuQm596bmknGPCp34f9uLrfWKgiBHDi_8-V8-bruBcFvCGbiPHMyDARhMiGMR_mkO6ZkmJDg483TR_VRd5bzLcaYSMblNDzvjqhs8xNnx93PL7rUBL0LthqwaPE1uSUWCAXlAjMy4D2ykNwd2H5bZx36JdpodgVyn8DEkIsrtUD_zdkAu37j4wypep2Q0YvzrdihH9r7fl2DKS6Gvh3dm61bTrtna-0znN3fJ931h_dfLz6hy6uPny_eXSLDR1qQWBM5Yc3xoDEnhhMLA6eYC7IiTMuRA10ROlnGhZiYpAQsZdYKsIBlm2En3duD7lJXM1jT3CXt1ZLc3LZTUTv1dye4rdrEOzWMTE5ENIHX9wIpfq-Qi5pd3n-NDhBrVkQOlGAuBWnoq3_Q21hTaPYUZUKOcuKCNer8QJkUc06wfliGYLVPVx3SVS1dtU-3Tbx87OGB_51lA_AByK0VNpD-PPw_zV9_QbHP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389697483</pqid></control><display><type>article</type><title>Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip</title><source>Springer Nature - Complete Springer Journals</source><creator>Musah, Samira ; Mammoto, Akiko ; Ferrante, Thomas C. ; Jeanty, Sauveur S. F. ; Hirano-Kobayashi, Mariko ; Mammoto, Tadanori ; Roberts, Kristen ; Chung, Seyoon ; Novak, Richard ; Ingram, Miles ; Fatanat-Didar, Tohid ; Koshy, Sandeep ; Weaver, James C. ; Church, George M. ; Ingber, Donald E.</creator><creatorcontrib>Musah, Samira ; Mammoto, Akiko ; Ferrante, Thomas C. ; Jeanty, Sauveur S. F. ; Hirano-Kobayashi, Mariko ; Mammoto, Tadanori ; Roberts, Kristen ; Chung, Seyoon ; Novak, Richard ; Ingram, Miles ; Fatanat-Didar, Tohid ; Koshy, Sandeep ; Weaver, James C. ; Church, George M. ; Ingber, Donald E.</creatorcontrib><description>An
in vitro
model of the human kidney glomerulus—the major site of blood filtration—could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possible because of the lack of functional human podocytes—the cells that regulate selective permeability in the glomerulus. Here, we demonstrate an efficient (over 90%) and chemically defined method for directing the differentiation of human induced pluripotent stem (hiPS) cells into podocytes that express markers for a mature phenotype (nephrin
+
, WT1
+
, podocin
+
, PAX2
−
) and that exhibit primary and secondary foot processes. We also show that the hiPS-cell-derived podocytes produce glomerular basement-membrane collagen and recapitulate the natural tissue–tissue interface of the glomerulus, as well as the differential clearance of albumin and inulin, when co-cultured with human glomerular endothelial cells in an organ-on-a-chip microfluidic device. The glomerulus-on-a-chip also mimics adriamycin-induced albuminuria and podocyte injury. This
in vitro
model of human glomerular function with mature human podocytes may facilitate drug development and personalized-medicine applications.
An efficient and chemically defined protocol for the differentiation of human induced pluripotent stem cells into podocytes enables the recapitulation of the differential clearance of the human kidney glomerulus in an organ-on-a-chip.</description><identifier>ISSN: 2157-846X</identifier><identifier>EISSN: 2157-846X</identifier><identifier>DOI: 10.1038/s41551-017-0069</identifier><identifier>PMID: 29038743</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/277 ; 631/532/1360 ; 631/532/2064/2158 ; 631/61/2035 ; 631/61/2320 ; Albumins ; Biochips ; Biomedical and Life Sciences ; Biomedical engineering ; Biomedical Engineering/Biotechnology ; Biomedicine ; Cell adhesion & migration ; Collagen ; Differentiation ; Drug development ; Endothelial cells ; Endothelium ; Engineering ; Glomerulus ; Inulin ; Kidneys ; Microfluidic devices ; Microfluidics ; Pax2 protein ; Permeability ; Phenotypes ; Pluripotency ; Precision medicine ; Stem cells</subject><ispartof>Nature biomedical engineering, 2017-05, Vol.1 (5), Article 0069</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. 2017</rights><rights>Macmillan Publishers Limited, part of Springer Nature. 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-8f1970a405a041c41de5420481b13a964e2b127d348873921ed23dd8ede095a03</citedby><cites>FETCH-LOGICAL-c462t-8f1970a405a041c41de5420481b13a964e2b127d348873921ed23dd8ede095a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41551-017-0069$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41551-017-0069$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29038743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Musah, Samira</creatorcontrib><creatorcontrib>Mammoto, Akiko</creatorcontrib><creatorcontrib>Ferrante, Thomas C.</creatorcontrib><creatorcontrib>Jeanty, Sauveur S. F.</creatorcontrib><creatorcontrib>Hirano-Kobayashi, Mariko</creatorcontrib><creatorcontrib>Mammoto, Tadanori</creatorcontrib><creatorcontrib>Roberts, Kristen</creatorcontrib><creatorcontrib>Chung, Seyoon</creatorcontrib><creatorcontrib>Novak, Richard</creatorcontrib><creatorcontrib>Ingram, Miles</creatorcontrib><creatorcontrib>Fatanat-Didar, Tohid</creatorcontrib><creatorcontrib>Koshy, Sandeep</creatorcontrib><creatorcontrib>Weaver, James C.</creatorcontrib><creatorcontrib>Church, George M.</creatorcontrib><creatorcontrib>Ingber, Donald E.</creatorcontrib><title>Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip</title><title>Nature biomedical engineering</title><addtitle>Nat Biomed Eng</addtitle><addtitle>Nat Biomed Eng</addtitle><description>An
in vitro
model of the human kidney glomerulus—the major site of blood filtration—could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possible because of the lack of functional human podocytes—the cells that regulate selective permeability in the glomerulus. Here, we demonstrate an efficient (over 90%) and chemically defined method for directing the differentiation of human induced pluripotent stem (hiPS) cells into podocytes that express markers for a mature phenotype (nephrin
+
, WT1
+
, podocin
+
, PAX2
−
) and that exhibit primary and secondary foot processes. We also show that the hiPS-cell-derived podocytes produce glomerular basement-membrane collagen and recapitulate the natural tissue–tissue interface of the glomerulus, as well as the differential clearance of albumin and inulin, when co-cultured with human glomerular endothelial cells in an organ-on-a-chip microfluidic device. The glomerulus-on-a-chip also mimics adriamycin-induced albuminuria and podocyte injury. This
in vitro
model of human glomerular function with mature human podocytes may facilitate drug development and personalized-medicine applications.
An efficient and chemically defined protocol for the differentiation of human induced pluripotent stem cells into podocytes enables the recapitulation of the differential clearance of the human kidney glomerulus in an organ-on-a-chip.</description><subject>631/1647/277</subject><subject>631/532/1360</subject><subject>631/532/2064/2158</subject><subject>631/61/2035</subject><subject>631/61/2320</subject><subject>Albumins</subject><subject>Biochips</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Cell adhesion & migration</subject><subject>Collagen</subject><subject>Differentiation</subject><subject>Drug development</subject><subject>Endothelial cells</subject><subject>Endothelium</subject><subject>Engineering</subject><subject>Glomerulus</subject><subject>Inulin</subject><subject>Kidneys</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Pax2 protein</subject><subject>Permeability</subject><subject>Phenotypes</subject><subject>Pluripotency</subject><subject>Precision medicine</subject><subject>Stem cells</subject><issn>2157-846X</issn><issn>2157-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kctrFTEUxgdRbGm7dicDbtzE5jUzyUaQ4gsq3VjoLuQm596bmknGPCp34f9uLrfWKgiBHDi_8-V8-bruBcFvCGbiPHMyDARhMiGMR_mkO6ZkmJDg483TR_VRd5bzLcaYSMblNDzvjqhs8xNnx93PL7rUBL0LthqwaPE1uSUWCAXlAjMy4D2ykNwd2H5bZx36JdpodgVyn8DEkIsrtUD_zdkAu37j4wypep2Q0YvzrdihH9r7fl2DKS6Gvh3dm61bTrtna-0znN3fJ931h_dfLz6hy6uPny_eXSLDR1qQWBM5Yc3xoDEnhhMLA6eYC7IiTMuRA10ROlnGhZiYpAQsZdYKsIBlm2En3duD7lJXM1jT3CXt1ZLc3LZTUTv1dye4rdrEOzWMTE5ENIHX9wIpfq-Qi5pd3n-NDhBrVkQOlGAuBWnoq3_Q21hTaPYUZUKOcuKCNer8QJkUc06wfliGYLVPVx3SVS1dtU-3Tbx87OGB_51lA_AByK0VNpD-PPw_zV9_QbHP</recordid><startdate>20170510</startdate><enddate>20170510</enddate><creator>Musah, Samira</creator><creator>Mammoto, Akiko</creator><creator>Ferrante, Thomas C.</creator><creator>Jeanty, Sauveur S. F.</creator><creator>Hirano-Kobayashi, Mariko</creator><creator>Mammoto, Tadanori</creator><creator>Roberts, Kristen</creator><creator>Chung, Seyoon</creator><creator>Novak, Richard</creator><creator>Ingram, Miles</creator><creator>Fatanat-Didar, Tohid</creator><creator>Koshy, Sandeep</creator><creator>Weaver, James C.</creator><creator>Church, George M.</creator><creator>Ingber, Donald E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170510</creationdate><title>Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip</title><author>Musah, Samira ; Mammoto, Akiko ; Ferrante, Thomas C. ; Jeanty, Sauveur S. F. ; Hirano-Kobayashi, Mariko ; Mammoto, Tadanori ; Roberts, Kristen ; Chung, Seyoon ; Novak, Richard ; Ingram, Miles ; Fatanat-Didar, Tohid ; Koshy, Sandeep ; Weaver, James C. ; Church, George M. ; Ingber, Donald E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-8f1970a405a041c41de5420481b13a964e2b127d348873921ed23dd8ede095a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/1647/277</topic><topic>631/532/1360</topic><topic>631/532/2064/2158</topic><topic>631/61/2035</topic><topic>631/61/2320</topic><topic>Albumins</topic><topic>Biochips</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Cell adhesion & migration</topic><topic>Collagen</topic><topic>Differentiation</topic><topic>Drug development</topic><topic>Endothelial cells</topic><topic>Endothelium</topic><topic>Engineering</topic><topic>Glomerulus</topic><topic>Inulin</topic><topic>Kidneys</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Pax2 protein</topic><topic>Permeability</topic><topic>Phenotypes</topic><topic>Pluripotency</topic><topic>Precision medicine</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Musah, Samira</creatorcontrib><creatorcontrib>Mammoto, Akiko</creatorcontrib><creatorcontrib>Ferrante, Thomas C.</creatorcontrib><creatorcontrib>Jeanty, Sauveur S. F.</creatorcontrib><creatorcontrib>Hirano-Kobayashi, Mariko</creatorcontrib><creatorcontrib>Mammoto, Tadanori</creatorcontrib><creatorcontrib>Roberts, Kristen</creatorcontrib><creatorcontrib>Chung, Seyoon</creatorcontrib><creatorcontrib>Novak, Richard</creatorcontrib><creatorcontrib>Ingram, Miles</creatorcontrib><creatorcontrib>Fatanat-Didar, Tohid</creatorcontrib><creatorcontrib>Koshy, Sandeep</creatorcontrib><creatorcontrib>Weaver, James C.</creatorcontrib><creatorcontrib>Church, George M.</creatorcontrib><creatorcontrib>Ingber, Donald E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Musah, Samira</au><au>Mammoto, Akiko</au><au>Ferrante, Thomas C.</au><au>Jeanty, Sauveur S. F.</au><au>Hirano-Kobayashi, Mariko</au><au>Mammoto, Tadanori</au><au>Roberts, Kristen</au><au>Chung, Seyoon</au><au>Novak, Richard</au><au>Ingram, Miles</au><au>Fatanat-Didar, Tohid</au><au>Koshy, Sandeep</au><au>Weaver, James C.</au><au>Church, George M.</au><au>Ingber, Donald E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip</atitle><jtitle>Nature biomedical engineering</jtitle><stitle>Nat Biomed Eng</stitle><addtitle>Nat Biomed Eng</addtitle><date>2017-05-10</date><risdate>2017</risdate><volume>1</volume><issue>5</issue><artnum>0069</artnum><issn>2157-846X</issn><eissn>2157-846X</eissn><abstract>An
in vitro
model of the human kidney glomerulus—the major site of blood filtration—could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possible because of the lack of functional human podocytes—the cells that regulate selective permeability in the glomerulus. Here, we demonstrate an efficient (over 90%) and chemically defined method for directing the differentiation of human induced pluripotent stem (hiPS) cells into podocytes that express markers for a mature phenotype (nephrin
+
, WT1
+
, podocin
+
, PAX2
−
) and that exhibit primary and secondary foot processes. We also show that the hiPS-cell-derived podocytes produce glomerular basement-membrane collagen and recapitulate the natural tissue–tissue interface of the glomerulus, as well as the differential clearance of albumin and inulin, when co-cultured with human glomerular endothelial cells in an organ-on-a-chip microfluidic device. The glomerulus-on-a-chip also mimics adriamycin-induced albuminuria and podocyte injury. This
in vitro
model of human glomerular function with mature human podocytes may facilitate drug development and personalized-medicine applications.
An efficient and chemically defined protocol for the differentiation of human induced pluripotent stem cells into podocytes enables the recapitulation of the differential clearance of the human kidney glomerulus in an organ-on-a-chip.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29038743</pmid><doi>10.1038/s41551-017-0069</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2157-846X |
ispartof | Nature biomedical engineering, 2017-05, Vol.1 (5), Article 0069 |
issn | 2157-846X 2157-846X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5639718 |
source | Springer Nature - Complete Springer Journals |
subjects | 631/1647/277 631/532/1360 631/532/2064/2158 631/61/2035 631/61/2320 Albumins Biochips Biomedical and Life Sciences Biomedical engineering Biomedical Engineering/Biotechnology Biomedicine Cell adhesion & migration Collagen Differentiation Drug development Endothelial cells Endothelium Engineering Glomerulus Inulin Kidneys Microfluidic devices Microfluidics Pax2 protein Permeability Phenotypes Pluripotency Precision medicine Stem cells |
title | Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mature%20induced-pluripotent-stem-cell-derived%20human%20podocytes%20reconstitute%20kidney%20glomerular-capillary-wall%20function%20on%20a%20chip&rft.jtitle=Nature%20biomedical%20engineering&rft.au=Musah,%20Samira&rft.date=2017-05-10&rft.volume=1&rft.issue=5&rft.artnum=0069&rft.issn=2157-846X&rft.eissn=2157-846X&rft_id=info:doi/10.1038/s41551-017-0069&rft_dat=%3Cproquest_pubme%3E1952104981%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389697483&rft_id=info:pmid/29038743&rfr_iscdi=true |