Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip

An in vitro model of the human kidney glomerulus—the major site of blood filtration—could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biomedical engineering 2017-05, Vol.1 (5), Article 0069
Hauptverfasser: Musah, Samira, Mammoto, Akiko, Ferrante, Thomas C., Jeanty, Sauveur S. F., Hirano-Kobayashi, Mariko, Mammoto, Tadanori, Roberts, Kristen, Chung, Seyoon, Novak, Richard, Ingram, Miles, Fatanat-Didar, Tohid, Koshy, Sandeep, Weaver, James C., Church, George M., Ingber, Donald E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Nature biomedical engineering
container_volume 1
creator Musah, Samira
Mammoto, Akiko
Ferrante, Thomas C.
Jeanty, Sauveur S. F.
Hirano-Kobayashi, Mariko
Mammoto, Tadanori
Roberts, Kristen
Chung, Seyoon
Novak, Richard
Ingram, Miles
Fatanat-Didar, Tohid
Koshy, Sandeep
Weaver, James C.
Church, George M.
Ingber, Donald E.
description An in vitro model of the human kidney glomerulus—the major site of blood filtration—could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possible because of the lack of functional human podocytes—the cells that regulate selective permeability in the glomerulus. Here, we demonstrate an efficient (over 90%) and chemically defined method for directing the differentiation of human induced pluripotent stem (hiPS) cells into podocytes that express markers for a mature phenotype (nephrin + , WT1 + , podocin + , PAX2 − ) and that exhibit primary and secondary foot processes. We also show that the hiPS-cell-derived podocytes produce glomerular basement-membrane collagen and recapitulate the natural tissue–tissue interface of the glomerulus, as well as the differential clearance of albumin and inulin, when co-cultured with human glomerular endothelial cells in an organ-on-a-chip microfluidic device. The glomerulus-on-a-chip also mimics adriamycin-induced albuminuria and podocyte injury. This in vitro model of human glomerular function with mature human podocytes may facilitate drug development and personalized-medicine applications. An efficient and chemically defined protocol for the differentiation of human induced pluripotent stem cells into podocytes enables the recapitulation of the differential clearance of the human kidney glomerulus in an organ-on-a-chip.
doi_str_mv 10.1038/s41551-017-0069
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5639718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1952104981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-8f1970a405a041c41de5420481b13a964e2b127d348873921ed23dd8ede095a03</originalsourceid><addsrcrecordid>eNp1kctrFTEUxgdRbGm7dicDbtzE5jUzyUaQ4gsq3VjoLuQm596bmknGPCp34f9uLrfWKgiBHDi_8-V8-bruBcFvCGbiPHMyDARhMiGMR_mkO6ZkmJDg483TR_VRd5bzLcaYSMblNDzvjqhs8xNnx93PL7rUBL0LthqwaPE1uSUWCAXlAjMy4D2ykNwd2H5bZx36JdpodgVyn8DEkIsrtUD_zdkAu37j4wypep2Q0YvzrdihH9r7fl2DKS6Gvh3dm61bTrtna-0znN3fJ931h_dfLz6hy6uPny_eXSLDR1qQWBM5Yc3xoDEnhhMLA6eYC7IiTMuRA10ROlnGhZiYpAQsZdYKsIBlm2En3duD7lJXM1jT3CXt1ZLc3LZTUTv1dye4rdrEOzWMTE5ENIHX9wIpfq-Qi5pd3n-NDhBrVkQOlGAuBWnoq3_Q21hTaPYUZUKOcuKCNer8QJkUc06wfliGYLVPVx3SVS1dtU-3Tbx87OGB_51lA_AByK0VNpD-PPw_zV9_QbHP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389697483</pqid></control><display><type>article</type><title>Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip</title><source>Springer Nature - Complete Springer Journals</source><creator>Musah, Samira ; Mammoto, Akiko ; Ferrante, Thomas C. ; Jeanty, Sauveur S. F. ; Hirano-Kobayashi, Mariko ; Mammoto, Tadanori ; Roberts, Kristen ; Chung, Seyoon ; Novak, Richard ; Ingram, Miles ; Fatanat-Didar, Tohid ; Koshy, Sandeep ; Weaver, James C. ; Church, George M. ; Ingber, Donald E.</creator><creatorcontrib>Musah, Samira ; Mammoto, Akiko ; Ferrante, Thomas C. ; Jeanty, Sauveur S. F. ; Hirano-Kobayashi, Mariko ; Mammoto, Tadanori ; Roberts, Kristen ; Chung, Seyoon ; Novak, Richard ; Ingram, Miles ; Fatanat-Didar, Tohid ; Koshy, Sandeep ; Weaver, James C. ; Church, George M. ; Ingber, Donald E.</creatorcontrib><description>An in vitro model of the human kidney glomerulus—the major site of blood filtration—could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possible because of the lack of functional human podocytes—the cells that regulate selective permeability in the glomerulus. Here, we demonstrate an efficient (over 90%) and chemically defined method for directing the differentiation of human induced pluripotent stem (hiPS) cells into podocytes that express markers for a mature phenotype (nephrin + , WT1 + , podocin + , PAX2 − ) and that exhibit primary and secondary foot processes. We also show that the hiPS-cell-derived podocytes produce glomerular basement-membrane collagen and recapitulate the natural tissue–tissue interface of the glomerulus, as well as the differential clearance of albumin and inulin, when co-cultured with human glomerular endothelial cells in an organ-on-a-chip microfluidic device. The glomerulus-on-a-chip also mimics adriamycin-induced albuminuria and podocyte injury. This in vitro model of human glomerular function with mature human podocytes may facilitate drug development and personalized-medicine applications. An efficient and chemically defined protocol for the differentiation of human induced pluripotent stem cells into podocytes enables the recapitulation of the differential clearance of the human kidney glomerulus in an organ-on-a-chip.</description><identifier>ISSN: 2157-846X</identifier><identifier>EISSN: 2157-846X</identifier><identifier>DOI: 10.1038/s41551-017-0069</identifier><identifier>PMID: 29038743</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/277 ; 631/532/1360 ; 631/532/2064/2158 ; 631/61/2035 ; 631/61/2320 ; Albumins ; Biochips ; Biomedical and Life Sciences ; Biomedical engineering ; Biomedical Engineering/Biotechnology ; Biomedicine ; Cell adhesion &amp; migration ; Collagen ; Differentiation ; Drug development ; Endothelial cells ; Endothelium ; Engineering ; Glomerulus ; Inulin ; Kidneys ; Microfluidic devices ; Microfluidics ; Pax2 protein ; Permeability ; Phenotypes ; Pluripotency ; Precision medicine ; Stem cells</subject><ispartof>Nature biomedical engineering, 2017-05, Vol.1 (5), Article 0069</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. 2017</rights><rights>Macmillan Publishers Limited, part of Springer Nature. 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-8f1970a405a041c41de5420481b13a964e2b127d348873921ed23dd8ede095a03</citedby><cites>FETCH-LOGICAL-c462t-8f1970a405a041c41de5420481b13a964e2b127d348873921ed23dd8ede095a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41551-017-0069$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41551-017-0069$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29038743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Musah, Samira</creatorcontrib><creatorcontrib>Mammoto, Akiko</creatorcontrib><creatorcontrib>Ferrante, Thomas C.</creatorcontrib><creatorcontrib>Jeanty, Sauveur S. F.</creatorcontrib><creatorcontrib>Hirano-Kobayashi, Mariko</creatorcontrib><creatorcontrib>Mammoto, Tadanori</creatorcontrib><creatorcontrib>Roberts, Kristen</creatorcontrib><creatorcontrib>Chung, Seyoon</creatorcontrib><creatorcontrib>Novak, Richard</creatorcontrib><creatorcontrib>Ingram, Miles</creatorcontrib><creatorcontrib>Fatanat-Didar, Tohid</creatorcontrib><creatorcontrib>Koshy, Sandeep</creatorcontrib><creatorcontrib>Weaver, James C.</creatorcontrib><creatorcontrib>Church, George M.</creatorcontrib><creatorcontrib>Ingber, Donald E.</creatorcontrib><title>Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip</title><title>Nature biomedical engineering</title><addtitle>Nat Biomed Eng</addtitle><addtitle>Nat Biomed Eng</addtitle><description>An in vitro model of the human kidney glomerulus—the major site of blood filtration—could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possible because of the lack of functional human podocytes—the cells that regulate selective permeability in the glomerulus. Here, we demonstrate an efficient (over 90%) and chemically defined method for directing the differentiation of human induced pluripotent stem (hiPS) cells into podocytes that express markers for a mature phenotype (nephrin + , WT1 + , podocin + , PAX2 − ) and that exhibit primary and secondary foot processes. We also show that the hiPS-cell-derived podocytes produce glomerular basement-membrane collagen and recapitulate the natural tissue–tissue interface of the glomerulus, as well as the differential clearance of albumin and inulin, when co-cultured with human glomerular endothelial cells in an organ-on-a-chip microfluidic device. The glomerulus-on-a-chip also mimics adriamycin-induced albuminuria and podocyte injury. This in vitro model of human glomerular function with mature human podocytes may facilitate drug development and personalized-medicine applications. An efficient and chemically defined protocol for the differentiation of human induced pluripotent stem cells into podocytes enables the recapitulation of the differential clearance of the human kidney glomerulus in an organ-on-a-chip.</description><subject>631/1647/277</subject><subject>631/532/1360</subject><subject>631/532/2064/2158</subject><subject>631/61/2035</subject><subject>631/61/2320</subject><subject>Albumins</subject><subject>Biochips</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Cell adhesion &amp; migration</subject><subject>Collagen</subject><subject>Differentiation</subject><subject>Drug development</subject><subject>Endothelial cells</subject><subject>Endothelium</subject><subject>Engineering</subject><subject>Glomerulus</subject><subject>Inulin</subject><subject>Kidneys</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Pax2 protein</subject><subject>Permeability</subject><subject>Phenotypes</subject><subject>Pluripotency</subject><subject>Precision medicine</subject><subject>Stem cells</subject><issn>2157-846X</issn><issn>2157-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kctrFTEUxgdRbGm7dicDbtzE5jUzyUaQ4gsq3VjoLuQm596bmknGPCp34f9uLrfWKgiBHDi_8-V8-bruBcFvCGbiPHMyDARhMiGMR_mkO6ZkmJDg483TR_VRd5bzLcaYSMblNDzvjqhs8xNnx93PL7rUBL0LthqwaPE1uSUWCAXlAjMy4D2ykNwd2H5bZx36JdpodgVyn8DEkIsrtUD_zdkAu37j4wypep2Q0YvzrdihH9r7fl2DKS6Gvh3dm61bTrtna-0znN3fJ931h_dfLz6hy6uPny_eXSLDR1qQWBM5Yc3xoDEnhhMLA6eYC7IiTMuRA10ROlnGhZiYpAQsZdYKsIBlm2En3duD7lJXM1jT3CXt1ZLc3LZTUTv1dye4rdrEOzWMTE5ENIHX9wIpfq-Qi5pd3n-NDhBrVkQOlGAuBWnoq3_Q21hTaPYUZUKOcuKCNer8QJkUc06wfliGYLVPVx3SVS1dtU-3Tbx87OGB_51lA_AByK0VNpD-PPw_zV9_QbHP</recordid><startdate>20170510</startdate><enddate>20170510</enddate><creator>Musah, Samira</creator><creator>Mammoto, Akiko</creator><creator>Ferrante, Thomas C.</creator><creator>Jeanty, Sauveur S. F.</creator><creator>Hirano-Kobayashi, Mariko</creator><creator>Mammoto, Tadanori</creator><creator>Roberts, Kristen</creator><creator>Chung, Seyoon</creator><creator>Novak, Richard</creator><creator>Ingram, Miles</creator><creator>Fatanat-Didar, Tohid</creator><creator>Koshy, Sandeep</creator><creator>Weaver, James C.</creator><creator>Church, George M.</creator><creator>Ingber, Donald E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170510</creationdate><title>Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip</title><author>Musah, Samira ; Mammoto, Akiko ; Ferrante, Thomas C. ; Jeanty, Sauveur S. F. ; Hirano-Kobayashi, Mariko ; Mammoto, Tadanori ; Roberts, Kristen ; Chung, Seyoon ; Novak, Richard ; Ingram, Miles ; Fatanat-Didar, Tohid ; Koshy, Sandeep ; Weaver, James C. ; Church, George M. ; Ingber, Donald E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-8f1970a405a041c41de5420481b13a964e2b127d348873921ed23dd8ede095a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/1647/277</topic><topic>631/532/1360</topic><topic>631/532/2064/2158</topic><topic>631/61/2035</topic><topic>631/61/2320</topic><topic>Albumins</topic><topic>Biochips</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Cell adhesion &amp; migration</topic><topic>Collagen</topic><topic>Differentiation</topic><topic>Drug development</topic><topic>Endothelial cells</topic><topic>Endothelium</topic><topic>Engineering</topic><topic>Glomerulus</topic><topic>Inulin</topic><topic>Kidneys</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Pax2 protein</topic><topic>Permeability</topic><topic>Phenotypes</topic><topic>Pluripotency</topic><topic>Precision medicine</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Musah, Samira</creatorcontrib><creatorcontrib>Mammoto, Akiko</creatorcontrib><creatorcontrib>Ferrante, Thomas C.</creatorcontrib><creatorcontrib>Jeanty, Sauveur S. F.</creatorcontrib><creatorcontrib>Hirano-Kobayashi, Mariko</creatorcontrib><creatorcontrib>Mammoto, Tadanori</creatorcontrib><creatorcontrib>Roberts, Kristen</creatorcontrib><creatorcontrib>Chung, Seyoon</creatorcontrib><creatorcontrib>Novak, Richard</creatorcontrib><creatorcontrib>Ingram, Miles</creatorcontrib><creatorcontrib>Fatanat-Didar, Tohid</creatorcontrib><creatorcontrib>Koshy, Sandeep</creatorcontrib><creatorcontrib>Weaver, James C.</creatorcontrib><creatorcontrib>Church, George M.</creatorcontrib><creatorcontrib>Ingber, Donald E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Musah, Samira</au><au>Mammoto, Akiko</au><au>Ferrante, Thomas C.</au><au>Jeanty, Sauveur S. F.</au><au>Hirano-Kobayashi, Mariko</au><au>Mammoto, Tadanori</au><au>Roberts, Kristen</au><au>Chung, Seyoon</au><au>Novak, Richard</au><au>Ingram, Miles</au><au>Fatanat-Didar, Tohid</au><au>Koshy, Sandeep</au><au>Weaver, James C.</au><au>Church, George M.</au><au>Ingber, Donald E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip</atitle><jtitle>Nature biomedical engineering</jtitle><stitle>Nat Biomed Eng</stitle><addtitle>Nat Biomed Eng</addtitle><date>2017-05-10</date><risdate>2017</risdate><volume>1</volume><issue>5</issue><artnum>0069</artnum><issn>2157-846X</issn><eissn>2157-846X</eissn><abstract>An in vitro model of the human kidney glomerulus—the major site of blood filtration—could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possible because of the lack of functional human podocytes—the cells that regulate selective permeability in the glomerulus. Here, we demonstrate an efficient (over 90%) and chemically defined method for directing the differentiation of human induced pluripotent stem (hiPS) cells into podocytes that express markers for a mature phenotype (nephrin + , WT1 + , podocin + , PAX2 − ) and that exhibit primary and secondary foot processes. We also show that the hiPS-cell-derived podocytes produce glomerular basement-membrane collagen and recapitulate the natural tissue–tissue interface of the glomerulus, as well as the differential clearance of albumin and inulin, when co-cultured with human glomerular endothelial cells in an organ-on-a-chip microfluidic device. The glomerulus-on-a-chip also mimics adriamycin-induced albuminuria and podocyte injury. This in vitro model of human glomerular function with mature human podocytes may facilitate drug development and personalized-medicine applications. An efficient and chemically defined protocol for the differentiation of human induced pluripotent stem cells into podocytes enables the recapitulation of the differential clearance of the human kidney glomerulus in an organ-on-a-chip.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29038743</pmid><doi>10.1038/s41551-017-0069</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2157-846X
ispartof Nature biomedical engineering, 2017-05, Vol.1 (5), Article 0069
issn 2157-846X
2157-846X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5639718
source Springer Nature - Complete Springer Journals
subjects 631/1647/277
631/532/1360
631/532/2064/2158
631/61/2035
631/61/2320
Albumins
Biochips
Biomedical and Life Sciences
Biomedical engineering
Biomedical Engineering/Biotechnology
Biomedicine
Cell adhesion & migration
Collagen
Differentiation
Drug development
Endothelial cells
Endothelium
Engineering
Glomerulus
Inulin
Kidneys
Microfluidic devices
Microfluidics
Pax2 protein
Permeability
Phenotypes
Pluripotency
Precision medicine
Stem cells
title Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mature%20induced-pluripotent-stem-cell-derived%20human%20podocytes%20reconstitute%20kidney%20glomerular-capillary-wall%20function%20on%20a%20chip&rft.jtitle=Nature%20biomedical%20engineering&rft.au=Musah,%20Samira&rft.date=2017-05-10&rft.volume=1&rft.issue=5&rft.artnum=0069&rft.issn=2157-846X&rft.eissn=2157-846X&rft_id=info:doi/10.1038/s41551-017-0069&rft_dat=%3Cproquest_pubme%3E1952104981%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389697483&rft_id=info:pmid/29038743&rfr_iscdi=true