Impact of Macroporosity on Catalytic Upgrading of Fast Pyrolysis Bio‐Oil by Esterification over Silica Sulfonic Acids

Fast pyrolysis bio‐oils possess unfavorable physicochemical properties and poor stability, in large part, owing to the presence of carboxylic acids, which hinders their use as biofuels. Catalytic esterification offers an atom‐ and energy‐efficient route to upgrade pyrolysis bio‐oils. Propyl sulfonic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2017-09, Vol.10 (17), p.3506-3511
Hauptverfasser: Manayil, Jinesh C., Osatiashtiani, Amin, Mendoza, Alvaro, Parlett, Christopher M.A., Isaacs, Mark A., Durndell, Lee J., Michailof, Chrysoula, Heracleous, Eleni, Lappas, Angelos, Lee, Adam F., Wilson, Karen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3511
container_issue 17
container_start_page 3506
container_title ChemSusChem
container_volume 10
creator Manayil, Jinesh C.
Osatiashtiani, Amin
Mendoza, Alvaro
Parlett, Christopher M.A.
Isaacs, Mark A.
Durndell, Lee J.
Michailof, Chrysoula
Heracleous, Eleni
Lappas, Angelos
Lee, Adam F.
Wilson, Karen
description Fast pyrolysis bio‐oils possess unfavorable physicochemical properties and poor stability, in large part, owing to the presence of carboxylic acids, which hinders their use as biofuels. Catalytic esterification offers an atom‐ and energy‐efficient route to upgrade pyrolysis bio‐oils. Propyl sulfonic acid (PrSO3H) silicas are active for carboxylic acid esterification but suffer mass‐transport limitations for bulky substrates. The incorporation of macropores (200 nm) enhances the activity of mesoporous SBA‐15 architectures (post‐functionalized by hydrothermal saline‐promoted grafting) for the esterification of linear carboxylic acids, with the magnitude of the turnover frequency (TOF) enhancement increasing with carboxylic acid chain length from 5 % (C3) to 110 % (C12). Macroporous–mesoporous PrSO3H/SBA‐15 also provides a two‐fold TOF enhancement over its mesoporous analogue for the esterification of a real, thermal fast‐pyrolysis bio‐oil derived from woodchips. The total acid number was reduced by 57 %, as determined by GC×GC–time‐of‐flight mass spectrometry (GC×GC–ToFMS), which indicated ester and ether formation accompanying the loss of acid, phenolic, aldehyde, and ketone components. The hole truth: The incorporation of macropores in mesoporous SBA‐15 enhances its activity for the esterification of linear carboxylic acids. The turnover frequency (TOF) increased from 5 % to 110 % with increasing alkyl chain length of the carboxylic acids from C3 to C12, respectively. The macroporous–mesoporous 3‐propylsulfonic acid (PrSO3H)/SBA‐15 also provided a twofold increase of TOF compared with the mesoporous analogue for the esterification of a real, thermal fast‐pyrolysis bio‐oil derived from woodchips.
doi_str_mv 10.1002/cssc.201700959
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5638084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1915343234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5059-2901124ce677e395f8dab5b6407562680a1583b576e1cd1468b74024b388a5aa3</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EohfYskSW2LCZwffYG6QStbRSUZGGSuwsx3EGV5442Emr7PoIPCNPgkfTDpcNK9s6nz-dc34AXmG0xAiRdzZnuyQIVwgprp6AQywFW3DBvj7d3yk-AEc53yAkkBLiOTggUgiOiDoEdxebwdgRxg5-MjbFIaaY_TjD2MPajCbMo7fwelgn0_p-veXOTB7h5znFMGef4Qcff97_uPIBNjM8zaNLvvPWjL4Y4q1LcOVDecPVFLrYF9mJ9W1-AZ51JmT38uE8Btdnp1_q88Xl1ceL-uRyYTniakEUwpgw60RVOap4J1vT8EYwVHFBhEQGc0kbXgmHbYuZkE3FEGENldJwY-gxeL_zDlOzca11_ZhM0EPyG5NmHY3Xf1d6_02v460ua5NIsiJ4-yBI8fvk8qg3PlsXguldnLLGCnPKKKFb9M0_6E2cUl_GKxStKBGI4EItd1TZds7JdftmMNLbTPU2U73PtHx4_ecIe_wxxAKoHXDng5v_o9P1alX_lv8CJK2v4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937326021</pqid></control><display><type>article</type><title>Impact of Macroporosity on Catalytic Upgrading of Fast Pyrolysis Bio‐Oil by Esterification over Silica Sulfonic Acids</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Manayil, Jinesh C. ; Osatiashtiani, Amin ; Mendoza, Alvaro ; Parlett, Christopher M.A. ; Isaacs, Mark A. ; Durndell, Lee J. ; Michailof, Chrysoula ; Heracleous, Eleni ; Lappas, Angelos ; Lee, Adam F. ; Wilson, Karen</creator><creatorcontrib>Manayil, Jinesh C. ; Osatiashtiani, Amin ; Mendoza, Alvaro ; Parlett, Christopher M.A. ; Isaacs, Mark A. ; Durndell, Lee J. ; Michailof, Chrysoula ; Heracleous, Eleni ; Lappas, Angelos ; Lee, Adam F. ; Wilson, Karen</creatorcontrib><description>Fast pyrolysis bio‐oils possess unfavorable physicochemical properties and poor stability, in large part, owing to the presence of carboxylic acids, which hinders their use as biofuels. Catalytic esterification offers an atom‐ and energy‐efficient route to upgrade pyrolysis bio‐oils. Propyl sulfonic acid (PrSO3H) silicas are active for carboxylic acid esterification but suffer mass‐transport limitations for bulky substrates. The incorporation of macropores (200 nm) enhances the activity of mesoporous SBA‐15 architectures (post‐functionalized by hydrothermal saline‐promoted grafting) for the esterification of linear carboxylic acids, with the magnitude of the turnover frequency (TOF) enhancement increasing with carboxylic acid chain length from 5 % (C3) to 110 % (C12). Macroporous–mesoporous PrSO3H/SBA‐15 also provides a two‐fold TOF enhancement over its mesoporous analogue for the esterification of a real, thermal fast‐pyrolysis bio‐oil derived from woodchips. The total acid number was reduced by 57 %, as determined by GC×GC–time‐of‐flight mass spectrometry (GC×GC–ToFMS), which indicated ester and ether formation accompanying the loss of acid, phenolic, aldehyde, and ketone components. The hole truth: The incorporation of macropores in mesoporous SBA‐15 enhances its activity for the esterification of linear carboxylic acids. The turnover frequency (TOF) increased from 5 % to 110 % with increasing alkyl chain length of the carboxylic acids from C3 to C12, respectively. The macroporous–mesoporous 3‐propylsulfonic acid (PrSO3H)/SBA‐15 also provided a twofold increase of TOF compared with the mesoporous analogue for the esterification of a real, thermal fast‐pyrolysis bio‐oil derived from woodchips.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201700959</identifier><identifier>PMID: 28665029</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>acidity ; Acids ; bio-oil ; Biofuels ; Carboxylic acids ; Carboxylic Acids - chemistry ; Catalysis ; Esterification ; Kinetics ; Macroporosity ; Mass spectrometry ; mesoporous silica ; Porosity ; Pyrolysis ; Silicon dioxide ; Silicon Dioxide - chemistry ; Substrates ; Sulfonic acid ; Sulfonic Acids - chemistry ; Temperature ; Upgrading</subject><ispartof>ChemSusChem, 2017-09, Vol.10 (17), p.3506-3511</ispartof><rights>2017 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5059-2901124ce677e395f8dab5b6407562680a1583b576e1cd1468b74024b388a5aa3</citedby><cites>FETCH-LOGICAL-c5059-2901124ce677e395f8dab5b6407562680a1583b576e1cd1468b74024b388a5aa3</cites><orcidid>0000-0003-4873-708X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201700959$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201700959$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28665029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manayil, Jinesh C.</creatorcontrib><creatorcontrib>Osatiashtiani, Amin</creatorcontrib><creatorcontrib>Mendoza, Alvaro</creatorcontrib><creatorcontrib>Parlett, Christopher M.A.</creatorcontrib><creatorcontrib>Isaacs, Mark A.</creatorcontrib><creatorcontrib>Durndell, Lee J.</creatorcontrib><creatorcontrib>Michailof, Chrysoula</creatorcontrib><creatorcontrib>Heracleous, Eleni</creatorcontrib><creatorcontrib>Lappas, Angelos</creatorcontrib><creatorcontrib>Lee, Adam F.</creatorcontrib><creatorcontrib>Wilson, Karen</creatorcontrib><title>Impact of Macroporosity on Catalytic Upgrading of Fast Pyrolysis Bio‐Oil by Esterification over Silica Sulfonic Acids</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Fast pyrolysis bio‐oils possess unfavorable physicochemical properties and poor stability, in large part, owing to the presence of carboxylic acids, which hinders their use as biofuels. Catalytic esterification offers an atom‐ and energy‐efficient route to upgrade pyrolysis bio‐oils. Propyl sulfonic acid (PrSO3H) silicas are active for carboxylic acid esterification but suffer mass‐transport limitations for bulky substrates. The incorporation of macropores (200 nm) enhances the activity of mesoporous SBA‐15 architectures (post‐functionalized by hydrothermal saline‐promoted grafting) for the esterification of linear carboxylic acids, with the magnitude of the turnover frequency (TOF) enhancement increasing with carboxylic acid chain length from 5 % (C3) to 110 % (C12). Macroporous–mesoporous PrSO3H/SBA‐15 also provides a two‐fold TOF enhancement over its mesoporous analogue for the esterification of a real, thermal fast‐pyrolysis bio‐oil derived from woodchips. The total acid number was reduced by 57 %, as determined by GC×GC–time‐of‐flight mass spectrometry (GC×GC–ToFMS), which indicated ester and ether formation accompanying the loss of acid, phenolic, aldehyde, and ketone components. The hole truth: The incorporation of macropores in mesoporous SBA‐15 enhances its activity for the esterification of linear carboxylic acids. The turnover frequency (TOF) increased from 5 % to 110 % with increasing alkyl chain length of the carboxylic acids from C3 to C12, respectively. The macroporous–mesoporous 3‐propylsulfonic acid (PrSO3H)/SBA‐15 also provided a twofold increase of TOF compared with the mesoporous analogue for the esterification of a real, thermal fast‐pyrolysis bio‐oil derived from woodchips.</description><subject>acidity</subject><subject>Acids</subject><subject>bio-oil</subject><subject>Biofuels</subject><subject>Carboxylic acids</subject><subject>Carboxylic Acids - chemistry</subject><subject>Catalysis</subject><subject>Esterification</subject><subject>Kinetics</subject><subject>Macroporosity</subject><subject>Mass spectrometry</subject><subject>mesoporous silica</subject><subject>Porosity</subject><subject>Pyrolysis</subject><subject>Silicon dioxide</subject><subject>Silicon Dioxide - chemistry</subject><subject>Substrates</subject><subject>Sulfonic acid</subject><subject>Sulfonic Acids - chemistry</subject><subject>Temperature</subject><subject>Upgrading</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhi0EohfYskSW2LCZwffYG6QStbRSUZGGSuwsx3EGV5442Emr7PoIPCNPgkfTDpcNK9s6nz-dc34AXmG0xAiRdzZnuyQIVwgprp6AQywFW3DBvj7d3yk-AEc53yAkkBLiOTggUgiOiDoEdxebwdgRxg5-MjbFIaaY_TjD2MPajCbMo7fwelgn0_p-veXOTB7h5znFMGef4Qcff97_uPIBNjM8zaNLvvPWjL4Y4q1LcOVDecPVFLrYF9mJ9W1-AZ51JmT38uE8Btdnp1_q88Xl1ceL-uRyYTniakEUwpgw60RVOap4J1vT8EYwVHFBhEQGc0kbXgmHbYuZkE3FEGENldJwY-gxeL_zDlOzca11_ZhM0EPyG5NmHY3Xf1d6_02v460ua5NIsiJ4-yBI8fvk8qg3PlsXguldnLLGCnPKKKFb9M0_6E2cUl_GKxStKBGI4EItd1TZds7JdftmMNLbTPU2U73PtHx4_ecIe_wxxAKoHXDng5v_o9P1alX_lv8CJK2v4g</recordid><startdate>20170911</startdate><enddate>20170911</enddate><creator>Manayil, Jinesh C.</creator><creator>Osatiashtiani, Amin</creator><creator>Mendoza, Alvaro</creator><creator>Parlett, Christopher M.A.</creator><creator>Isaacs, Mark A.</creator><creator>Durndell, Lee J.</creator><creator>Michailof, Chrysoula</creator><creator>Heracleous, Eleni</creator><creator>Lappas, Angelos</creator><creator>Lee, Adam F.</creator><creator>Wilson, Karen</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4873-708X</orcidid></search><sort><creationdate>20170911</creationdate><title>Impact of Macroporosity on Catalytic Upgrading of Fast Pyrolysis Bio‐Oil by Esterification over Silica Sulfonic Acids</title><author>Manayil, Jinesh C. ; Osatiashtiani, Amin ; Mendoza, Alvaro ; Parlett, Christopher M.A. ; Isaacs, Mark A. ; Durndell, Lee J. ; Michailof, Chrysoula ; Heracleous, Eleni ; Lappas, Angelos ; Lee, Adam F. ; Wilson, Karen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5059-2901124ce677e395f8dab5b6407562680a1583b576e1cd1468b74024b388a5aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>acidity</topic><topic>Acids</topic><topic>bio-oil</topic><topic>Biofuels</topic><topic>Carboxylic acids</topic><topic>Carboxylic Acids - chemistry</topic><topic>Catalysis</topic><topic>Esterification</topic><topic>Kinetics</topic><topic>Macroporosity</topic><topic>Mass spectrometry</topic><topic>mesoporous silica</topic><topic>Porosity</topic><topic>Pyrolysis</topic><topic>Silicon dioxide</topic><topic>Silicon Dioxide - chemistry</topic><topic>Substrates</topic><topic>Sulfonic acid</topic><topic>Sulfonic Acids - chemistry</topic><topic>Temperature</topic><topic>Upgrading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manayil, Jinesh C.</creatorcontrib><creatorcontrib>Osatiashtiani, Amin</creatorcontrib><creatorcontrib>Mendoza, Alvaro</creatorcontrib><creatorcontrib>Parlett, Christopher M.A.</creatorcontrib><creatorcontrib>Isaacs, Mark A.</creatorcontrib><creatorcontrib>Durndell, Lee J.</creatorcontrib><creatorcontrib>Michailof, Chrysoula</creatorcontrib><creatorcontrib>Heracleous, Eleni</creatorcontrib><creatorcontrib>Lappas, Angelos</creatorcontrib><creatorcontrib>Lee, Adam F.</creatorcontrib><creatorcontrib>Wilson, Karen</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manayil, Jinesh C.</au><au>Osatiashtiani, Amin</au><au>Mendoza, Alvaro</au><au>Parlett, Christopher M.A.</au><au>Isaacs, Mark A.</au><au>Durndell, Lee J.</au><au>Michailof, Chrysoula</au><au>Heracleous, Eleni</au><au>Lappas, Angelos</au><au>Lee, Adam F.</au><au>Wilson, Karen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Macroporosity on Catalytic Upgrading of Fast Pyrolysis Bio‐Oil by Esterification over Silica Sulfonic Acids</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2017-09-11</date><risdate>2017</risdate><volume>10</volume><issue>17</issue><spage>3506</spage><epage>3511</epage><pages>3506-3511</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Fast pyrolysis bio‐oils possess unfavorable physicochemical properties and poor stability, in large part, owing to the presence of carboxylic acids, which hinders their use as biofuels. Catalytic esterification offers an atom‐ and energy‐efficient route to upgrade pyrolysis bio‐oils. Propyl sulfonic acid (PrSO3H) silicas are active for carboxylic acid esterification but suffer mass‐transport limitations for bulky substrates. The incorporation of macropores (200 nm) enhances the activity of mesoporous SBA‐15 architectures (post‐functionalized by hydrothermal saline‐promoted grafting) for the esterification of linear carboxylic acids, with the magnitude of the turnover frequency (TOF) enhancement increasing with carboxylic acid chain length from 5 % (C3) to 110 % (C12). Macroporous–mesoporous PrSO3H/SBA‐15 also provides a two‐fold TOF enhancement over its mesoporous analogue for the esterification of a real, thermal fast‐pyrolysis bio‐oil derived from woodchips. The total acid number was reduced by 57 %, as determined by GC×GC–time‐of‐flight mass spectrometry (GC×GC–ToFMS), which indicated ester and ether formation accompanying the loss of acid, phenolic, aldehyde, and ketone components. The hole truth: The incorporation of macropores in mesoporous SBA‐15 enhances its activity for the esterification of linear carboxylic acids. The turnover frequency (TOF) increased from 5 % to 110 % with increasing alkyl chain length of the carboxylic acids from C3 to C12, respectively. The macroporous–mesoporous 3‐propylsulfonic acid (PrSO3H)/SBA‐15 also provided a twofold increase of TOF compared with the mesoporous analogue for the esterification of a real, thermal fast‐pyrolysis bio‐oil derived from woodchips.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28665029</pmid><doi>10.1002/cssc.201700959</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4873-708X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2017-09, Vol.10 (17), p.3506-3511
issn 1864-5631
1864-564X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5638084
source MEDLINE; Wiley Online Library All Journals
subjects acidity
Acids
bio-oil
Biofuels
Carboxylic acids
Carboxylic Acids - chemistry
Catalysis
Esterification
Kinetics
Macroporosity
Mass spectrometry
mesoporous silica
Porosity
Pyrolysis
Silicon dioxide
Silicon Dioxide - chemistry
Substrates
Sulfonic acid
Sulfonic Acids - chemistry
Temperature
Upgrading
title Impact of Macroporosity on Catalytic Upgrading of Fast Pyrolysis Bio‐Oil by Esterification over Silica Sulfonic Acids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Macroporosity%20on%20Catalytic%20Upgrading%20of%20Fast%20Pyrolysis%20Bio%E2%80%90Oil%20by%20Esterification%20over%20Silica%20Sulfonic%20Acids&rft.jtitle=ChemSusChem&rft.au=Manayil,%20Jinesh%20C.&rft.date=2017-09-11&rft.volume=10&rft.issue=17&rft.spage=3506&rft.epage=3511&rft.pages=3506-3511&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201700959&rft_dat=%3Cproquest_pubme%3E1915343234%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937326021&rft_id=info:pmid/28665029&rfr_iscdi=true