Distinctive Roles for Periplasmic Proteases in the Maintenance of Essential Outer Membrane Protein Assembly
Outer membrane protein (OMP) biogenesis in is a robust process essential to the life of the organism. It is catalyzed by the β-barrel assembly machine (Bam) complex, and a number of quality control factors, including periplasmic chaperones and proteases, maintain the integrity of this trafficking pa...
Gespeichert in:
Veröffentlicht in: | Journal of bacteriology 2017-10, Vol.199 (20) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Journal of bacteriology |
container_volume | 199 |
creator | Soltes, Garner R Martin, Nicholas R Park, Eunhae Sutterlin, Holly A Silhavy, Thomas J |
description | Outer membrane protein (OMP) biogenesis in
is a robust process essential to the life of the organism. It is catalyzed by the β-barrel assembly machine (Bam) complex, and a number of quality control factors, including periplasmic chaperones and proteases, maintain the integrity of this trafficking pathway. Little is known, however, about how periplasmic proteases recognize and degrade OMP substrates when assembly is compromised or whether different proteases recognize the same substrate at distinct points in the assembly pathway. In this work, we use well-defined assembly-defective mutants of LptD, the essential lipopolysaccharide assembly translocon, to show that the periplasmic protease DegP degrades substrates with assembly defects that prevent or impair initial contact with Bam, causing the mutant protein to accumulate in the periplasm. In contrast, another periplasmic protease, BepA, degrades a LptD mutant substrate that has engaged the Bam complex and formed a nearly complete barrel. Furthermore, we describe the role of the outer membrane lipoprotein YcaL, a protease of heretofore unknown function, in the degradation of a LptD substrate that has engaged the Bam complex but is stalled at an earlier step in the assembly process that is not accessible to BepA. Our results demonstrate that multiple periplasmic proteases monitor OMPs at distinct points in the assembly process.
OMP assembly is catalyzed by the essential Bam complex and occurs in a cellular environment devoid of energy sources. Assembly intermediates that misfold can compromise this essential molecular machine. Here we demonstrate distinctive roles for three different periplasmic proteases that can clear OMP substrates with folding defects that compromise assembly at three different stages. These quality control factors help ensure the integrity of the permeability barrier that contributes to the intrinsic resistance of Gram-negative organisms to many antibiotics. |
doi_str_mv | 10.1128/JB.00418-17 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5637175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1953090910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-ec01cabce39b66fcc7da856090f366c00a6f80a98f166d301efa815aa316e2f33</originalsourceid><addsrcrecordid>eNpdkUFPFTEUhRujkSe6cm-auDExg_dOZzrtxgQQVAKBGF03nb5bKc5MH-0MCf-e4kOiru7ifOfk3BzGXiPsIdbqw8nBHkCDqsLuCVshaFW1rYCnbAVQY6VRix32IucrAGyatn7OdmrVqUahWLFfn0Kew-TmcEP8Wxwocx8Tv6AUNoPNY3D8IsWZbC5KmPh8SfzMhmmmyU6OePT8KGea5mAHfr7MlPgZjX2yE22NxbNfgLEfbl-yZ94OmV493F324_jo--GX6vT889fD_dPKNV07V-QAne0dCd1L6Z3r1la1EjR4IaUDsNIrsFp5lHItAMlbha21AiXVXohd9nGbu1n6kdautEt2MJsURptuTbTB_KtM4dL8jDemlaLDri0B7x4CUrxeKM9mDNnRMJSv4pIN6roTIEFAQd_-h17FJU3lvUKVFTRovKfebymXYs6J_GMZBHM_ojk5ML9HNNgV-s3f_R_ZP6uJO5kWmPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953090910</pqid></control><display><type>article</type><title>Distinctive Roles for Periplasmic Proteases in the Maintenance of Essential Outer Membrane Protein Assembly</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Soltes, Garner R ; Martin, Nicholas R ; Park, Eunhae ; Sutterlin, Holly A ; Silhavy, Thomas J</creator><contributor>O'Toole, George</contributor><creatorcontrib>Soltes, Garner R ; Martin, Nicholas R ; Park, Eunhae ; Sutterlin, Holly A ; Silhavy, Thomas J ; O'Toole, George</creatorcontrib><description>Outer membrane protein (OMP) biogenesis in
is a robust process essential to the life of the organism. It is catalyzed by the β-barrel assembly machine (Bam) complex, and a number of quality control factors, including periplasmic chaperones and proteases, maintain the integrity of this trafficking pathway. Little is known, however, about how periplasmic proteases recognize and degrade OMP substrates when assembly is compromised or whether different proteases recognize the same substrate at distinct points in the assembly pathway. In this work, we use well-defined assembly-defective mutants of LptD, the essential lipopolysaccharide assembly translocon, to show that the periplasmic protease DegP degrades substrates with assembly defects that prevent or impair initial contact with Bam, causing the mutant protein to accumulate in the periplasm. In contrast, another periplasmic protease, BepA, degrades a LptD mutant substrate that has engaged the Bam complex and formed a nearly complete barrel. Furthermore, we describe the role of the outer membrane lipoprotein YcaL, a protease of heretofore unknown function, in the degradation of a LptD substrate that has engaged the Bam complex but is stalled at an earlier step in the assembly process that is not accessible to BepA. Our results demonstrate that multiple periplasmic proteases monitor OMPs at distinct points in the assembly process.
OMP assembly is catalyzed by the essential Bam complex and occurs in a cellular environment devoid of energy sources. Assembly intermediates that misfold can compromise this essential molecular machine. Here we demonstrate distinctive roles for three different periplasmic proteases that can clear OMP substrates with folding defects that compromise assembly at three different stages. These quality control factors help ensure the integrity of the permeability barrier that contributes to the intrinsic resistance of Gram-negative organisms to many antibiotics.</description><identifier>ISSN: 0021-9193</identifier><identifier>EISSN: 1098-5530</identifier><identifier>DOI: 10.1128/JB.00418-17</identifier><identifier>PMID: 28784813</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Bacterial Outer Membrane Proteins - metabolism ; Bacteriology ; Biosynthesis ; Chaperones ; E coli ; Escherichia coli - enzymology ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; Heat-Shock Proteins - metabolism ; Lipopolysaccharides ; Membrane proteins ; Metalloproteases - metabolism ; Models, Biological ; Mutants ; Outer membrane proteins ; Peptide Hydrolases - metabolism ; Periplasm ; Periplasmic Proteins - metabolism ; Proteases ; Proteinase ; Proteolysis ; Quality control ; Serine Endopeptidases - metabolism ; Substrates</subject><ispartof>Journal of bacteriology, 2017-10, Vol.199 (20)</ispartof><rights>Copyright © 2017 American Society for Microbiology.</rights><rights>Copyright American Society for Microbiology Oct 2017</rights><rights>Copyright © 2017 American Society for Microbiology. 2017 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-ec01cabce39b66fcc7da856090f366c00a6f80a98f166d301efa815aa316e2f33</citedby><cites>FETCH-LOGICAL-c475t-ec01cabce39b66fcc7da856090f366c00a6f80a98f166d301efa815aa316e2f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5637175/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5637175/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28784813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>O'Toole, George</contributor><creatorcontrib>Soltes, Garner R</creatorcontrib><creatorcontrib>Martin, Nicholas R</creatorcontrib><creatorcontrib>Park, Eunhae</creatorcontrib><creatorcontrib>Sutterlin, Holly A</creatorcontrib><creatorcontrib>Silhavy, Thomas J</creatorcontrib><title>Distinctive Roles for Periplasmic Proteases in the Maintenance of Essential Outer Membrane Protein Assembly</title><title>Journal of bacteriology</title><addtitle>J Bacteriol</addtitle><description>Outer membrane protein (OMP) biogenesis in
is a robust process essential to the life of the organism. It is catalyzed by the β-barrel assembly machine (Bam) complex, and a number of quality control factors, including periplasmic chaperones and proteases, maintain the integrity of this trafficking pathway. Little is known, however, about how periplasmic proteases recognize and degrade OMP substrates when assembly is compromised or whether different proteases recognize the same substrate at distinct points in the assembly pathway. In this work, we use well-defined assembly-defective mutants of LptD, the essential lipopolysaccharide assembly translocon, to show that the periplasmic protease DegP degrades substrates with assembly defects that prevent or impair initial contact with Bam, causing the mutant protein to accumulate in the periplasm. In contrast, another periplasmic protease, BepA, degrades a LptD mutant substrate that has engaged the Bam complex and formed a nearly complete barrel. Furthermore, we describe the role of the outer membrane lipoprotein YcaL, a protease of heretofore unknown function, in the degradation of a LptD substrate that has engaged the Bam complex but is stalled at an earlier step in the assembly process that is not accessible to BepA. Our results demonstrate that multiple periplasmic proteases monitor OMPs at distinct points in the assembly process.
OMP assembly is catalyzed by the essential Bam complex and occurs in a cellular environment devoid of energy sources. Assembly intermediates that misfold can compromise this essential molecular machine. Here we demonstrate distinctive roles for three different periplasmic proteases that can clear OMP substrates with folding defects that compromise assembly at three different stages. These quality control factors help ensure the integrity of the permeability barrier that contributes to the intrinsic resistance of Gram-negative organisms to many antibiotics.</description><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biosynthesis</subject><subject>Chaperones</subject><subject>E coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Lipopolysaccharides</subject><subject>Membrane proteins</subject><subject>Metalloproteases - metabolism</subject><subject>Models, Biological</subject><subject>Mutants</subject><subject>Outer membrane proteins</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Periplasm</subject><subject>Periplasmic Proteins - metabolism</subject><subject>Proteases</subject><subject>Proteinase</subject><subject>Proteolysis</subject><subject>Quality control</subject><subject>Serine Endopeptidases - metabolism</subject><subject>Substrates</subject><issn>0021-9193</issn><issn>1098-5530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFPFTEUhRujkSe6cm-auDExg_dOZzrtxgQQVAKBGF03nb5bKc5MH-0MCf-e4kOiru7ifOfk3BzGXiPsIdbqw8nBHkCDqsLuCVshaFW1rYCnbAVQY6VRix32IucrAGyatn7OdmrVqUahWLFfn0Kew-TmcEP8Wxwocx8Tv6AUNoPNY3D8IsWZbC5KmPh8SfzMhmmmyU6OePT8KGea5mAHfr7MlPgZjX2yE22NxbNfgLEfbl-yZ94OmV493F324_jo--GX6vT889fD_dPKNV07V-QAne0dCd1L6Z3r1la1EjR4IaUDsNIrsFp5lHItAMlbha21AiXVXohd9nGbu1n6kdautEt2MJsURptuTbTB_KtM4dL8jDemlaLDri0B7x4CUrxeKM9mDNnRMJSv4pIN6roTIEFAQd_-h17FJU3lvUKVFTRovKfebymXYs6J_GMZBHM_ojk5ML9HNNgV-s3f_R_ZP6uJO5kWmPQ</recordid><startdate>20171015</startdate><enddate>20171015</enddate><creator>Soltes, Garner R</creator><creator>Martin, Nicholas R</creator><creator>Park, Eunhae</creator><creator>Sutterlin, Holly A</creator><creator>Silhavy, Thomas J</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171015</creationdate><title>Distinctive Roles for Periplasmic Proteases in the Maintenance of Essential Outer Membrane Protein Assembly</title><author>Soltes, Garner R ; Martin, Nicholas R ; Park, Eunhae ; Sutterlin, Holly A ; Silhavy, Thomas J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-ec01cabce39b66fcc7da856090f366c00a6f80a98f166d301efa815aa316e2f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biosynthesis</topic><topic>Chaperones</topic><topic>E coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Lipopolysaccharides</topic><topic>Membrane proteins</topic><topic>Metalloproteases - metabolism</topic><topic>Models, Biological</topic><topic>Mutants</topic><topic>Outer membrane proteins</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Periplasm</topic><topic>Periplasmic Proteins - metabolism</topic><topic>Proteases</topic><topic>Proteinase</topic><topic>Proteolysis</topic><topic>Quality control</topic><topic>Serine Endopeptidases - metabolism</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soltes, Garner R</creatorcontrib><creatorcontrib>Martin, Nicholas R</creatorcontrib><creatorcontrib>Park, Eunhae</creatorcontrib><creatorcontrib>Sutterlin, Holly A</creatorcontrib><creatorcontrib>Silhavy, Thomas J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of bacteriology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soltes, Garner R</au><au>Martin, Nicholas R</au><au>Park, Eunhae</au><au>Sutterlin, Holly A</au><au>Silhavy, Thomas J</au><au>O'Toole, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinctive Roles for Periplasmic Proteases in the Maintenance of Essential Outer Membrane Protein Assembly</atitle><jtitle>Journal of bacteriology</jtitle><addtitle>J Bacteriol</addtitle><date>2017-10-15</date><risdate>2017</risdate><volume>199</volume><issue>20</issue><issn>0021-9193</issn><eissn>1098-5530</eissn><abstract>Outer membrane protein (OMP) biogenesis in
is a robust process essential to the life of the organism. It is catalyzed by the β-barrel assembly machine (Bam) complex, and a number of quality control factors, including periplasmic chaperones and proteases, maintain the integrity of this trafficking pathway. Little is known, however, about how periplasmic proteases recognize and degrade OMP substrates when assembly is compromised or whether different proteases recognize the same substrate at distinct points in the assembly pathway. In this work, we use well-defined assembly-defective mutants of LptD, the essential lipopolysaccharide assembly translocon, to show that the periplasmic protease DegP degrades substrates with assembly defects that prevent or impair initial contact with Bam, causing the mutant protein to accumulate in the periplasm. In contrast, another periplasmic protease, BepA, degrades a LptD mutant substrate that has engaged the Bam complex and formed a nearly complete barrel. Furthermore, we describe the role of the outer membrane lipoprotein YcaL, a protease of heretofore unknown function, in the degradation of a LptD substrate that has engaged the Bam complex but is stalled at an earlier step in the assembly process that is not accessible to BepA. Our results demonstrate that multiple periplasmic proteases monitor OMPs at distinct points in the assembly process.
OMP assembly is catalyzed by the essential Bam complex and occurs in a cellular environment devoid of energy sources. Assembly intermediates that misfold can compromise this essential molecular machine. Here we demonstrate distinctive roles for three different periplasmic proteases that can clear OMP substrates with folding defects that compromise assembly at three different stages. These quality control factors help ensure the integrity of the permeability barrier that contributes to the intrinsic resistance of Gram-negative organisms to many antibiotics.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>28784813</pmid><doi>10.1128/JB.00418-17</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9193 |
ispartof | Journal of bacteriology, 2017-10, Vol.199 (20) |
issn | 0021-9193 1098-5530 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5637175 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Bacterial Outer Membrane Proteins - metabolism Bacteriology Biosynthesis Chaperones E coli Escherichia coli - enzymology Escherichia coli - metabolism Escherichia coli Proteins - metabolism Heat-Shock Proteins - metabolism Lipopolysaccharides Membrane proteins Metalloproteases - metabolism Models, Biological Mutants Outer membrane proteins Peptide Hydrolases - metabolism Periplasm Periplasmic Proteins - metabolism Proteases Proteinase Proteolysis Quality control Serine Endopeptidases - metabolism Substrates |
title | Distinctive Roles for Periplasmic Proteases in the Maintenance of Essential Outer Membrane Protein Assembly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A10%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinctive%20Roles%20for%20Periplasmic%20Proteases%20in%20the%20Maintenance%20of%20Essential%20Outer%20Membrane%20Protein%20Assembly&rft.jtitle=Journal%20of%20bacteriology&rft.au=Soltes,%20Garner%20R&rft.date=2017-10-15&rft.volume=199&rft.issue=20&rft.issn=0021-9193&rft.eissn=1098-5530&rft_id=info:doi/10.1128/JB.00418-17&rft_dat=%3Cproquest_pubme%3E1953090910%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1953090910&rft_id=info:pmid/28784813&rfr_iscdi=true |