3D Liver Tumor Segmentation in CT Images Using Improved Fuzzy C-Means and Graph Cuts

Three-dimensional (3D) liver tumor segmentation from Computed Tomography (CT) images is a prerequisite for computer-aided diagnosis, treatment planning, and monitoring of liver cancer. Despite many years of research, 3D liver tumor segmentation remains a challenging task. In this paper, an efficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2017-01, Vol.2017 (2017), p.1-11
Hauptverfasser: Zhang, Rui, Zhou, Zhuhuang, Wu, Shuicai, Wu, Weiwei, Zhang, Yanhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2017
container_start_page 1
container_title BioMed research international
container_volume 2017
creator Zhang, Rui
Zhou, Zhuhuang
Wu, Shuicai
Wu, Weiwei
Zhang, Yanhua
description Three-dimensional (3D) liver tumor segmentation from Computed Tomography (CT) images is a prerequisite for computer-aided diagnosis, treatment planning, and monitoring of liver cancer. Despite many years of research, 3D liver tumor segmentation remains a challenging task. In this paper, an efficient semiautomatic method was proposed for liver tumor segmentation in CT volumes based on improved fuzzy C-means (FCM) and graph cuts. With a single seed point, the tumor volume of interest (VOI) was extracted using confidence connected region growing algorithm to reduce computational cost. Then, initial foreground/background regions were labeled automatically, and a kernelized FCM with spatial information was incorporated in graph cuts segmentation to increase segmentation accuracy. The proposed method was evaluated on the public clinical dataset (3Dircadb), which included 15 CT volumes consisting of various sizes of liver tumors. We achieved an average volumetric overlap error (VOE) of 29.04% and Dice similarity coefficient (DICE) of 0.83, with an average processing time of 45 s per tumor. The experimental results showed that the proposed method was accurate for 3D liver tumor segmentation with a reduction of processing time.
doi_str_mv 10.1155/2017/5207685
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5635475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557302179</galeid><sourcerecordid>A557302179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-d418306deda91e867894e263cf39c21e2df1d30014b1c3ea615270eaed35b4763</originalsourceid><addsrcrecordid>eNqNkc9v0zAUxy0EYlPZjTOyxAVphPm34wvSFLYxqYgD3dlyk5fUU-MUOyna_vq5aumAE77Ylj_6vPf8RegtJZ8olfKCEaovJCNalfIFOmWcikJRQV8ez5yfoLOU7kleJVXEqNfohBliCGPkFC34Fzz3W4h4MfVDxD-g6yGMbvRDwD7gaoFve9dBwnfJhy5fNnHYQoOvp8fHB1wV38CFhF1o8E10mxWupjG9Qa9at05wdthn6O76alF9Lebfb26ry3lRC2PGohG05EQ10DhDoVS6NAKY4nXLTc0osKalDSeEiiWtOThFJdMEHDRcLoVWfIY-772badlDU-fGo1vbTfS9iw92cN7-_RL8ynbD1krFpdAyCz4cBHH4OUEabe9TDeu1CzBMyVIjSymoyb84Q-__Qe-HKYY8XqZEyZXWjD1TnVuD9aEdct16J7WXUmpOGNUmUx_3VB2HlCK0x5Ypsbtc7S5Xe8g14-_-HPMI_04xA-d7YOVD4375_9RBZqB1zzTlWhjGnwBuS7DU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1948367722</pqid></control><display><type>article</type><title>3D Liver Tumor Segmentation in CT Images Using Improved Fuzzy C-Means and Graph Cuts</title><source>PubMed Central Open Access</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhang, Rui ; Zhou, Zhuhuang ; Wu, Shuicai ; Wu, Weiwei ; Zhang, Yanhua</creator><contributor>Corsi, Cristiana</contributor><creatorcontrib>Zhang, Rui ; Zhou, Zhuhuang ; Wu, Shuicai ; Wu, Weiwei ; Zhang, Yanhua ; Corsi, Cristiana</creatorcontrib><description>Three-dimensional (3D) liver tumor segmentation from Computed Tomography (CT) images is a prerequisite for computer-aided diagnosis, treatment planning, and monitoring of liver cancer. Despite many years of research, 3D liver tumor segmentation remains a challenging task. In this paper, an efficient semiautomatic method was proposed for liver tumor segmentation in CT volumes based on improved fuzzy C-means (FCM) and graph cuts. With a single seed point, the tumor volume of interest (VOI) was extracted using confidence connected region growing algorithm to reduce computational cost. Then, initial foreground/background regions were labeled automatically, and a kernelized FCM with spatial information was incorporated in graph cuts segmentation to increase segmentation accuracy. The proposed method was evaluated on the public clinical dataset (3Dircadb), which included 15 CT volumes consisting of various sizes of liver tumors. We achieved an average volumetric overlap error (VOE) of 29.04% and Dice similarity coefficient (DICE) of 0.83, with an average processing time of 45 s per tumor. The experimental results showed that the proposed method was accurate for 3D liver tumor segmentation with a reduction of processing time.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2017/5207685</identifier><identifier>PMID: 29090220</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Artificial intelligence ; Clustering ; Computed tomography ; Computer applications ; CT imaging ; Diagnosis ; Fuzzy algorithms ; Fuzzy logic ; Fuzzy systems ; Image processing ; Image segmentation ; Liver ; Liver cancer ; Liver tumors ; Medical imaging ; Methods ; Neural networks ; Spatial data ; Tumors ; Watersheds</subject><ispartof>BioMed research international, 2017-01, Vol.2017 (2017), p.1-11</ispartof><rights>Copyright © 2017 Weiwei Wu et al.</rights><rights>COPYRIGHT 2017 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2017 Weiwei Wu et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2017 Weiwei Wu et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-d418306deda91e867894e263cf39c21e2df1d30014b1c3ea615270eaed35b4763</citedby><cites>FETCH-LOGICAL-c499t-d418306deda91e867894e263cf39c21e2df1d30014b1c3ea615270eaed35b4763</cites><orcidid>0000-0003-0570-8473 ; 0000-0002-8027-9499 ; 0000-0001-8203-8819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635475/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635475/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29090220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Corsi, Cristiana</contributor><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Zhou, Zhuhuang</creatorcontrib><creatorcontrib>Wu, Shuicai</creatorcontrib><creatorcontrib>Wu, Weiwei</creatorcontrib><creatorcontrib>Zhang, Yanhua</creatorcontrib><title>3D Liver Tumor Segmentation in CT Images Using Improved Fuzzy C-Means and Graph Cuts</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Three-dimensional (3D) liver tumor segmentation from Computed Tomography (CT) images is a prerequisite for computer-aided diagnosis, treatment planning, and monitoring of liver cancer. Despite many years of research, 3D liver tumor segmentation remains a challenging task. In this paper, an efficient semiautomatic method was proposed for liver tumor segmentation in CT volumes based on improved fuzzy C-means (FCM) and graph cuts. With a single seed point, the tumor volume of interest (VOI) was extracted using confidence connected region growing algorithm to reduce computational cost. Then, initial foreground/background regions were labeled automatically, and a kernelized FCM with spatial information was incorporated in graph cuts segmentation to increase segmentation accuracy. The proposed method was evaluated on the public clinical dataset (3Dircadb), which included 15 CT volumes consisting of various sizes of liver tumors. We achieved an average volumetric overlap error (VOE) of 29.04% and Dice similarity coefficient (DICE) of 0.83, with an average processing time of 45 s per tumor. The experimental results showed that the proposed method was accurate for 3D liver tumor segmentation with a reduction of processing time.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>Computed tomography</subject><subject>Computer applications</subject><subject>CT imaging</subject><subject>Diagnosis</subject><subject>Fuzzy algorithms</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Liver</subject><subject>Liver cancer</subject><subject>Liver tumors</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Spatial data</subject><subject>Tumors</subject><subject>Watersheds</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc9v0zAUxy0EYlPZjTOyxAVphPm34wvSFLYxqYgD3dlyk5fUU-MUOyna_vq5aumAE77Ylj_6vPf8RegtJZ8olfKCEaovJCNalfIFOmWcikJRQV8ez5yfoLOU7kleJVXEqNfohBliCGPkFC34Fzz3W4h4MfVDxD-g6yGMbvRDwD7gaoFve9dBwnfJhy5fNnHYQoOvp8fHB1wV38CFhF1o8E10mxWupjG9Qa9at05wdthn6O76alF9Lebfb26ry3lRC2PGohG05EQ10DhDoVS6NAKY4nXLTc0osKalDSeEiiWtOThFJdMEHDRcLoVWfIY-772badlDU-fGo1vbTfS9iw92cN7-_RL8ynbD1krFpdAyCz4cBHH4OUEabe9TDeu1CzBMyVIjSymoyb84Q-__Qe-HKYY8XqZEyZXWjD1TnVuD9aEdct16J7WXUmpOGNUmUx_3VB2HlCK0x5Ypsbtc7S5Xe8g14-_-HPMI_04xA-d7YOVD4375_9RBZqB1zzTlWhjGnwBuS7DU</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Zhang, Rui</creator><creator>Zhou, Zhuhuang</creator><creator>Wu, Shuicai</creator><creator>Wu, Weiwei</creator><creator>Zhang, Yanhua</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0570-8473</orcidid><orcidid>https://orcid.org/0000-0002-8027-9499</orcidid><orcidid>https://orcid.org/0000-0001-8203-8819</orcidid></search><sort><creationdate>20170101</creationdate><title>3D Liver Tumor Segmentation in CT Images Using Improved Fuzzy C-Means and Graph Cuts</title><author>Zhang, Rui ; Zhou, Zhuhuang ; Wu, Shuicai ; Wu, Weiwei ; Zhang, Yanhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-d418306deda91e867894e263cf39c21e2df1d30014b1c3ea615270eaed35b4763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>Computed tomography</topic><topic>Computer applications</topic><topic>CT imaging</topic><topic>Diagnosis</topic><topic>Fuzzy algorithms</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Liver</topic><topic>Liver cancer</topic><topic>Liver tumors</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Spatial data</topic><topic>Tumors</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Zhou, Zhuhuang</creatorcontrib><creatorcontrib>Wu, Shuicai</creatorcontrib><creatorcontrib>Wu, Weiwei</creatorcontrib><creatorcontrib>Zhang, Yanhua</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Rui</au><au>Zhou, Zhuhuang</au><au>Wu, Shuicai</au><au>Wu, Weiwei</au><au>Zhang, Yanhua</au><au>Corsi, Cristiana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Liver Tumor Segmentation in CT Images Using Improved Fuzzy C-Means and Graph Cuts</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Three-dimensional (3D) liver tumor segmentation from Computed Tomography (CT) images is a prerequisite for computer-aided diagnosis, treatment planning, and monitoring of liver cancer. Despite many years of research, 3D liver tumor segmentation remains a challenging task. In this paper, an efficient semiautomatic method was proposed for liver tumor segmentation in CT volumes based on improved fuzzy C-means (FCM) and graph cuts. With a single seed point, the tumor volume of interest (VOI) was extracted using confidence connected region growing algorithm to reduce computational cost. Then, initial foreground/background regions were labeled automatically, and a kernelized FCM with spatial information was incorporated in graph cuts segmentation to increase segmentation accuracy. The proposed method was evaluated on the public clinical dataset (3Dircadb), which included 15 CT volumes consisting of various sizes of liver tumors. We achieved an average volumetric overlap error (VOE) of 29.04% and Dice similarity coefficient (DICE) of 0.83, with an average processing time of 45 s per tumor. The experimental results showed that the proposed method was accurate for 3D liver tumor segmentation with a reduction of processing time.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>29090220</pmid><doi>10.1155/2017/5207685</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0570-8473</orcidid><orcidid>https://orcid.org/0000-0002-8027-9499</orcidid><orcidid>https://orcid.org/0000-0001-8203-8819</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2017-01, Vol.2017 (2017), p.1-11
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5635475
source PubMed Central Open Access; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Artificial intelligence
Clustering
Computed tomography
Computer applications
CT imaging
Diagnosis
Fuzzy algorithms
Fuzzy logic
Fuzzy systems
Image processing
Image segmentation
Liver
Liver cancer
Liver tumors
Medical imaging
Methods
Neural networks
Spatial data
Tumors
Watersheds
title 3D Liver Tumor Segmentation in CT Images Using Improved Fuzzy C-Means and Graph Cuts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Liver%20Tumor%20Segmentation%20in%20CT%20Images%20Using%20Improved%20Fuzzy%20C-Means%20and%20Graph%20Cuts&rft.jtitle=BioMed%20research%20international&rft.au=Zhang,%20Rui&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2017/5207685&rft_dat=%3Cgale_pubme%3EA557302179%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1948367722&rft_id=info:pmid/29090220&rft_galeid=A557302179&rfr_iscdi=true