Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices

The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of translational engineering in health and medicine 2017-01, Vol.5, p.1-11
Hauptverfasser: Bocan, Kara N., Mickle, Marlin H., Sejdic, Ervin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE journal of translational engineering in health and medicine
container_volume 5
creator Bocan, Kara N.
Mickle, Marlin H.
Sejdic, Ervin
description The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna. In comparison to the dipole system, the loop system exhibits greater sensitivity to changes in tissue structure and properties in terms of power gain, but provides higher gain when the separation is on the order of the smaller antenna dimension. The dipole system was shown to provide higher gain than the loop system at greater implant depths for the same implanted antenna area, and was less sensitive to variations in tissue properties and structure in terms of power gain at all investigated implant depths. The results show the potential of easily-fabricated, low-cost printed antenna topologies for UHF transcutaneous power, and the importance of environmental considerations in choosing the antenna topology.
doi_str_mv 10.1109/JTEHM.2017.2723391
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5630008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8003456</ieee_id><doaj_id>oai_doaj_org_article_a546b3a0532b42fdb08dd096b9757a1b</doaj_id><sourcerecordid>1950181840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-880de2f5f6add7552ab07b907b144a406d9e77140ba50399a843a18238f2f1f23</originalsourceid><addsrcrecordid>eNpVkd9rFDEQxxdRbKn9BxQkj77cmV-7SV6EUqs9adGHU8GXMNlMasre5kz2Kv3vzfXOow2EDJnvfGaYb9O8ZnTOGDXvvywvLq_nnDI154oLYdiz5pizTs-4UPz5o_ioOS3lltajWWe4edkccUOZ7oQ6bn4tYykbJD8gR3BxiNM9gdGTs3HCcYRCQsrkW_qLmSwzjCXUYErkZ8w4YClksVoPME7gBiTX6GMPA_mId7HH8qp5EWAoeLp_T5rvny6W55ezq6-fF-dnV7Neaj3NtKYeeWhDB96rtuXgqHKmXiYlSNp5g0oxSR20VBgDWgpgmgsdeGCBi5NmseP6BLd2neMK8r1NEO3DR8o3FvIU-wEttLJzAmgruJM8eEe199R0zqhWAXOV9WHHWm_cCn2P45RheAJ9mhnjb3uT7mzbie2CK-DdHpDTnw2Wya5i6XGoS8K0KZaZtq6eaUmrlO-kfU6lZAyHNozarcf2wWO79djuPa5Fbx8PeCj572gVvNkJIiIe0ppSIeuM_wBkWKsq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950181840</pqid></control><display><type>article</type><title>Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bocan, Kara N. ; Mickle, Marlin H. ; Sejdic, Ervin</creator><creatorcontrib>Bocan, Kara N. ; Mickle, Marlin H. ; Sejdic, Ervin</creatorcontrib><description>The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna. In comparison to the dipole system, the loop system exhibits greater sensitivity to changes in tissue structure and properties in terms of power gain, but provides higher gain when the separation is on the order of the smaller antenna dimension. The dipole system was shown to provide higher gain than the loop system at greater implant depths for the same implanted antenna area, and was less sensitive to variations in tissue properties and structure in terms of power gain at all investigated implant depths. The results show the potential of easily-fabricated, low-cost printed antenna topologies for UHF transcutaneous power, and the importance of environmental considerations in choosing the antenna topology.</description><identifier>ISSN: 2168-2372</identifier><identifier>EISSN: 2168-2372</identifier><identifier>DOI: 10.1109/JTEHM.2017.2723391</identifier><identifier>PMID: 29018637</identifier><identifier>CODEN: IJTEBN</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Antenna measurements ; antennas ; Atmospheric modeling ; Dipole antennas ; Fats ; implantable medical devices ; Implants ; tissue dielectric properties ; Topology ; transcutaneous energy transfer ; Wireless power transfer</subject><ispartof>IEEE journal of translational engineering in health and medicine, 2017-01, Vol.5, p.1-11</ispartof><rights>2168-2372 © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 2017 IEEE</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-880de2f5f6add7552ab07b907b144a406d9e77140ba50399a843a18238f2f1f23</citedby><cites>FETCH-LOGICAL-c488t-880de2f5f6add7552ab07b907b144a406d9e77140ba50399a843a18238f2f1f23</cites><orcidid>0000-0003-4987-8298 ; 0000-0002-5780-5016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5630008/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8003456$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27633,27924,27925,53791,53793,54933</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29018637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bocan, Kara N.</creatorcontrib><creatorcontrib>Mickle, Marlin H.</creatorcontrib><creatorcontrib>Sejdic, Ervin</creatorcontrib><title>Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices</title><title>IEEE journal of translational engineering in health and medicine</title><addtitle>JTEHM</addtitle><addtitle>IEEE J Transl Eng Health Med</addtitle><description>The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna. In comparison to the dipole system, the loop system exhibits greater sensitivity to changes in tissue structure and properties in terms of power gain, but provides higher gain when the separation is on the order of the smaller antenna dimension. The dipole system was shown to provide higher gain than the loop system at greater implant depths for the same implanted antenna area, and was less sensitive to variations in tissue properties and structure in terms of power gain at all investigated implant depths. The results show the potential of easily-fabricated, low-cost printed antenna topologies for UHF transcutaneous power, and the importance of environmental considerations in choosing the antenna topology.</description><subject>Antenna measurements</subject><subject>antennas</subject><subject>Atmospheric modeling</subject><subject>Dipole antennas</subject><subject>Fats</subject><subject>implantable medical devices</subject><subject>Implants</subject><subject>tissue dielectric properties</subject><subject>Topology</subject><subject>transcutaneous energy transfer</subject><subject>Wireless power transfer</subject><issn>2168-2372</issn><issn>2168-2372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVkd9rFDEQxxdRbKn9BxQkj77cmV-7SV6EUqs9adGHU8GXMNlMasre5kz2Kv3vzfXOow2EDJnvfGaYb9O8ZnTOGDXvvywvLq_nnDI154oLYdiz5pizTs-4UPz5o_ioOS3lltajWWe4edkccUOZ7oQ6bn4tYykbJD8gR3BxiNM9gdGTs3HCcYRCQsrkW_qLmSwzjCXUYErkZ8w4YClksVoPME7gBiTX6GMPA_mId7HH8qp5EWAoeLp_T5rvny6W55ezq6-fF-dnV7Neaj3NtKYeeWhDB96rtuXgqHKmXiYlSNp5g0oxSR20VBgDWgpgmgsdeGCBi5NmseP6BLd2neMK8r1NEO3DR8o3FvIU-wEttLJzAmgruJM8eEe199R0zqhWAXOV9WHHWm_cCn2P45RheAJ9mhnjb3uT7mzbie2CK-DdHpDTnw2Wya5i6XGoS8K0KZaZtq6eaUmrlO-kfU6lZAyHNozarcf2wWO79djuPa5Fbx8PeCj572gVvNkJIiIe0ppSIeuM_wBkWKsq</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Bocan, Kara N.</creator><creator>Mickle, Marlin H.</creator><creator>Sejdic, Ervin</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4987-8298</orcidid><orcidid>https://orcid.org/0000-0002-5780-5016</orcidid></search><sort><creationdate>20170101</creationdate><title>Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices</title><author>Bocan, Kara N. ; Mickle, Marlin H. ; Sejdic, Ervin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-880de2f5f6add7552ab07b907b144a406d9e77140ba50399a843a18238f2f1f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antenna measurements</topic><topic>antennas</topic><topic>Atmospheric modeling</topic><topic>Dipole antennas</topic><topic>Fats</topic><topic>implantable medical devices</topic><topic>Implants</topic><topic>tissue dielectric properties</topic><topic>Topology</topic><topic>transcutaneous energy transfer</topic><topic>Wireless power transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bocan, Kara N.</creatorcontrib><creatorcontrib>Mickle, Marlin H.</creatorcontrib><creatorcontrib>Sejdic, Ervin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of translational engineering in health and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bocan, Kara N.</au><au>Mickle, Marlin H.</au><au>Sejdic, Ervin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices</atitle><jtitle>IEEE journal of translational engineering in health and medicine</jtitle><stitle>JTEHM</stitle><addtitle>IEEE J Transl Eng Health Med</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>5</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2168-2372</issn><eissn>2168-2372</eissn><coden>IJTEBN</coden><abstract>The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna. In comparison to the dipole system, the loop system exhibits greater sensitivity to changes in tissue structure and properties in terms of power gain, but provides higher gain when the separation is on the order of the smaller antenna dimension. The dipole system was shown to provide higher gain than the loop system at greater implant depths for the same implanted antenna area, and was less sensitive to variations in tissue properties and structure in terms of power gain at all investigated implant depths. The results show the potential of easily-fabricated, low-cost printed antenna topologies for UHF transcutaneous power, and the importance of environmental considerations in choosing the antenna topology.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29018637</pmid><doi>10.1109/JTEHM.2017.2723391</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4987-8298</orcidid><orcidid>https://orcid.org/0000-0002-5780-5016</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-2372
ispartof IEEE journal of translational engineering in health and medicine, 2017-01, Vol.5, p.1-11
issn 2168-2372
2168-2372
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5630008
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Antenna measurements
antennas
Atmospheric modeling
Dipole antennas
Fats
implantable medical devices
Implants
tissue dielectric properties
Topology
transcutaneous energy transfer
Wireless power transfer
title Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tissue%20Variability%20and%20Antennas%20for%20Power%20Transfer%20to%20Wireless%20Implantable%20Medical%20Devices&rft.jtitle=IEEE%20journal%20of%20translational%20engineering%20in%20health%20and%20medicine&rft.au=Bocan,%20Kara%20N.&rft.date=2017-01-01&rft.volume=5&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2168-2372&rft.eissn=2168-2372&rft.coden=IJTEBN&rft_id=info:doi/10.1109/JTEHM.2017.2723391&rft_dat=%3Cproquest_pubme%3E1950181840%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950181840&rft_id=info:pmid/29018637&rft_ieee_id=8003456&rft_doaj_id=oai_doaj_org_article_a546b3a0532b42fdb08dd096b9757a1b&rfr_iscdi=true