The C. elegans Intestine As a Model for Intercellular Lumen Morphogenesis and In Vivo Polarized Membrane Biogenesis at the Single-cell Level: Labeling by Antibody Staining, RNAi Loss-of-function Analysis and Imaging

Multicellular tubes, fundamental units of all internal organs, are composed of polarized epithelial or endothelial cells, with apical membranes lining the lumen and basolateral membranes contacting each other and/or the extracellular matrix. How this distinctive membrane asymmetry is established and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Visualized Experiments 2017-10 (128)
Hauptverfasser: Zhang, Nan, Khan, Liakot A, Membreno, Edward, Jafari, Gholamali, Yan, Siyang, Zhang, Hongjie, Gobel, Verena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 128
container_start_page
container_title Journal of Visualized Experiments
container_volume
creator Zhang, Nan
Khan, Liakot A
Membreno, Edward
Jafari, Gholamali
Yan, Siyang
Zhang, Hongjie
Gobel, Verena
description Multicellular tubes, fundamental units of all internal organs, are composed of polarized epithelial or endothelial cells, with apical membranes lining the lumen and basolateral membranes contacting each other and/or the extracellular matrix. How this distinctive membrane asymmetry is established and maintained during organ morphogenesis is still an unresolved question of cell biology. This protocol describes the C. elegans intestine as a model for the analysis of polarized membrane biogenesis during tube morphogenesis, with emphasis on apical membrane and lumen biogenesis. The C. elegans twenty-cell single-layered intestinal epithelium is arranged into a simple bilaterally symmetrical tube, permitting analysis on a single-cell level. Membrane polarization occurs concomitantly with polarized cell division and migration during early embryogenesis, but de novo polarized membrane biogenesis continues throughout larval growth, when cells no longer proliferate and move. The latter setting allows one to separate subcellular changes that simultaneously mediate these different polarizing processes, difficult to distinguish in most polarity models. Apical-, basolateral membrane-, junctional-, cytoskeletal- and endomembrane components can be labeled and tracked throughout development by GFP fusion proteins, or assessed by in situ antibody staining. Together with the organism's genetic versatility, the C. elegans intestine thus provides a unique in vivo model for the visual, developmental, and molecular genetic analysis of polarized membrane and tube biogenesis. The specific methods (all standard) described here include how to: label intestinal subcellular components by antibody staining; analyze genes involved in polarized membrane biogenesis by loss-of-function studies adapted to the typically essential tubulogenesis genes; assess polarity defects during different developmental stages; interpret phenotypes by epifluorescence, differential interference contrast (DIC) and confocal microscopy; quantify visual defects. This protocol can be adapted to analyze any of the often highly conserved molecules involved in epithelial polarity, membrane biogenesis, tube and lumen morphogenesis.
doi_str_mv 10.3791/56100
format Article
fullrecord <record><control><sourceid>proquest_223</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5628585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949695708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-1e700448d8d1886db1840bc66da913f0119b51f414f2af328fda91734705453f3</originalsourceid><addsrcrecordid>eNpVkt1uEzEQhVcIREvpC3CBfIPEBVvs_bW5qBQifiptAdGCuLO8u-PEkdcO9m6k8KK8DpMmhHJla87nM6MzTpJzRi_yWrDXZcUofZCcMlHQlPL6x8N795PkSYwrSquMlvxxcpJxIYpaiNPk9-0SyPyCgIWFcpFcuRHiaByQWSSKXPseLNE-3AmhA2snqwJppgEcqmG99AtwEA3SrkeKfDcbT754pMwv6Mk1DG1Q6PfW_CNHMmLbG-MWFtKdKWlgA_YNaVQLFsuk3ZKZG03r-y25GZVxWHxFvn6aGdL4GFOvUz25bjTeIajs9jjBoBbIPk0eaWUjnB_Os-Tb-3e3849p8_nD1XzWpF3OszFlUFNaFLznPeO86lvGC9p2VdUrwXJNGRNtyXTBCp0pnWdc74Q6L2paFmWu87Pkcu-7ntoB-g7cGJSV62AGFbbSKyP_V5xZyoXfyLLKeMlLNHh5MAj-54TZy8HEXSSYmZ-ixB2KSpQ15Yi-2KNdwAgC6GMbRuXuE8i7T4Dc8_szHam_W0fg2R5Y-Q3IlZ8CJhgPr_8Ah4e3pg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949695708</pqid></control><display><type>article</type><title>The C. elegans Intestine As a Model for Intercellular Lumen Morphogenesis and In Vivo Polarized Membrane Biogenesis at the Single-cell Level: Labeling by Antibody Staining, RNAi Loss-of-function Analysis and Imaging</title><source>Journal of Visualized Experiments : JoVE</source><creator>Zhang, Nan ; Khan, Liakot A ; Membreno, Edward ; Jafari, Gholamali ; Yan, Siyang ; Zhang, Hongjie ; Gobel, Verena</creator><creatorcontrib>Zhang, Nan ; Khan, Liakot A ; Membreno, Edward ; Jafari, Gholamali ; Yan, Siyang ; Zhang, Hongjie ; Gobel, Verena</creatorcontrib><description>Multicellular tubes, fundamental units of all internal organs, are composed of polarized epithelial or endothelial cells, with apical membranes lining the lumen and basolateral membranes contacting each other and/or the extracellular matrix. How this distinctive membrane asymmetry is established and maintained during organ morphogenesis is still an unresolved question of cell biology. This protocol describes the C. elegans intestine as a model for the analysis of polarized membrane biogenesis during tube morphogenesis, with emphasis on apical membrane and lumen biogenesis. The C. elegans twenty-cell single-layered intestinal epithelium is arranged into a simple bilaterally symmetrical tube, permitting analysis on a single-cell level. Membrane polarization occurs concomitantly with polarized cell division and migration during early embryogenesis, but de novo polarized membrane biogenesis continues throughout larval growth, when cells no longer proliferate and move. The latter setting allows one to separate subcellular changes that simultaneously mediate these different polarizing processes, difficult to distinguish in most polarity models. Apical-, basolateral membrane-, junctional-, cytoskeletal- and endomembrane components can be labeled and tracked throughout development by GFP fusion proteins, or assessed by in situ antibody staining. Together with the organism's genetic versatility, the C. elegans intestine thus provides a unique in vivo model for the visual, developmental, and molecular genetic analysis of polarized membrane and tube biogenesis. The specific methods (all standard) described here include how to: label intestinal subcellular components by antibody staining; analyze genes involved in polarized membrane biogenesis by loss-of-function studies adapted to the typically essential tubulogenesis genes; assess polarity defects during different developmental stages; interpret phenotypes by epifluorescence, differential interference contrast (DIC) and confocal microscopy; quantify visual defects. This protocol can be adapted to analyze any of the often highly conserved molecules involved in epithelial polarity, membrane biogenesis, tube and lumen morphogenesis.</description><identifier>ISSN: 1940-087X</identifier><identifier>EISSN: 1940-087X</identifier><identifier>DOI: 10.3791/56100</identifier><identifier>PMID: 28994799</identifier><language>eng</language><publisher>United States: MyJove Corporation</publisher><subject>Animals ; Antibodies - chemistry ; Caenorhabditis elegans - anatomy &amp; histology ; Caenorhabditis elegans - growth &amp; development ; Caenorhabditis elegans - physiology ; Developmental Biology ; Intestines - anatomy &amp; histology ; Intestines - diagnostic imaging ; Intestines - physiology ; Membranes - anatomy &amp; histology ; Membranes - growth &amp; development ; Membranes - physiology ; Morphogenesis - physiology ; Organelle Biogenesis ; RNA Interference - physiology ; Staining and Labeling - methods</subject><ispartof>Journal of Visualized Experiments, 2017-10 (128)</ispartof><rights>Copyright © 2017, Journal of Visualized Experiments</rights><rights>Copyright © 2017, Journal of Visualized Experiments 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-1e700448d8d1886db1840bc66da913f0119b51f414f2af328fda91734705453f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.jove.com/files/email_thumbs/56100.png</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5628585/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5628585/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3843,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.3791/56100$$EView_record_in_Journal_of_Visualized_Experiments$$FView_record_in_$$GJournal_of_Visualized_Experiments</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28994799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Khan, Liakot A</creatorcontrib><creatorcontrib>Membreno, Edward</creatorcontrib><creatorcontrib>Jafari, Gholamali</creatorcontrib><creatorcontrib>Yan, Siyang</creatorcontrib><creatorcontrib>Zhang, Hongjie</creatorcontrib><creatorcontrib>Gobel, Verena</creatorcontrib><title>The C. elegans Intestine As a Model for Intercellular Lumen Morphogenesis and In Vivo Polarized Membrane Biogenesis at the Single-cell Level: Labeling by Antibody Staining, RNAi Loss-of-function Analysis and Imaging</title><title>Journal of Visualized Experiments</title><addtitle>J Vis Exp</addtitle><description>Multicellular tubes, fundamental units of all internal organs, are composed of polarized epithelial or endothelial cells, with apical membranes lining the lumen and basolateral membranes contacting each other and/or the extracellular matrix. How this distinctive membrane asymmetry is established and maintained during organ morphogenesis is still an unresolved question of cell biology. This protocol describes the C. elegans intestine as a model for the analysis of polarized membrane biogenesis during tube morphogenesis, with emphasis on apical membrane and lumen biogenesis. The C. elegans twenty-cell single-layered intestinal epithelium is arranged into a simple bilaterally symmetrical tube, permitting analysis on a single-cell level. Membrane polarization occurs concomitantly with polarized cell division and migration during early embryogenesis, but de novo polarized membrane biogenesis continues throughout larval growth, when cells no longer proliferate and move. The latter setting allows one to separate subcellular changes that simultaneously mediate these different polarizing processes, difficult to distinguish in most polarity models. Apical-, basolateral membrane-, junctional-, cytoskeletal- and endomembrane components can be labeled and tracked throughout development by GFP fusion proteins, or assessed by in situ antibody staining. Together with the organism's genetic versatility, the C. elegans intestine thus provides a unique in vivo model for the visual, developmental, and molecular genetic analysis of polarized membrane and tube biogenesis. The specific methods (all standard) described here include how to: label intestinal subcellular components by antibody staining; analyze genes involved in polarized membrane biogenesis by loss-of-function studies adapted to the typically essential tubulogenesis genes; assess polarity defects during different developmental stages; interpret phenotypes by epifluorescence, differential interference contrast (DIC) and confocal microscopy; quantify visual defects. This protocol can be adapted to analyze any of the often highly conserved molecules involved in epithelial polarity, membrane biogenesis, tube and lumen morphogenesis.</description><subject>Animals</subject><subject>Antibodies - chemistry</subject><subject>Caenorhabditis elegans - anatomy &amp; histology</subject><subject>Caenorhabditis elegans - growth &amp; development</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Developmental Biology</subject><subject>Intestines - anatomy &amp; histology</subject><subject>Intestines - diagnostic imaging</subject><subject>Intestines - physiology</subject><subject>Membranes - anatomy &amp; histology</subject><subject>Membranes - growth &amp; development</subject><subject>Membranes - physiology</subject><subject>Morphogenesis - physiology</subject><subject>Organelle Biogenesis</subject><subject>RNA Interference - physiology</subject><subject>Staining and Labeling - methods</subject><issn>1940-087X</issn><issn>1940-087X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkt1uEzEQhVcIREvpC3CBfIPEBVvs_bW5qBQifiptAdGCuLO8u-PEkdcO9m6k8KK8DpMmhHJla87nM6MzTpJzRi_yWrDXZcUofZCcMlHQlPL6x8N795PkSYwrSquMlvxxcpJxIYpaiNPk9-0SyPyCgIWFcpFcuRHiaByQWSSKXPseLNE-3AmhA2snqwJppgEcqmG99AtwEA3SrkeKfDcbT754pMwv6Mk1DG1Q6PfW_CNHMmLbG-MWFtKdKWlgA_YNaVQLFsuk3ZKZG03r-y25GZVxWHxFvn6aGdL4GFOvUz25bjTeIajs9jjBoBbIPk0eaWUjnB_Os-Tb-3e3849p8_nD1XzWpF3OszFlUFNaFLznPeO86lvGC9p2VdUrwXJNGRNtyXTBCp0pnWdc74Q6L2paFmWu87Pkcu-7ntoB-g7cGJSV62AGFbbSKyP_V5xZyoXfyLLKeMlLNHh5MAj-54TZy8HEXSSYmZ-ixB2KSpQ15Yi-2KNdwAgC6GMbRuXuE8i7T4Dc8_szHam_W0fg2R5Y-Q3IlZ8CJhgPr_8Ah4e3pg</recordid><startdate>20171003</startdate><enddate>20171003</enddate><creator>Zhang, Nan</creator><creator>Khan, Liakot A</creator><creator>Membreno, Edward</creator><creator>Jafari, Gholamali</creator><creator>Yan, Siyang</creator><creator>Zhang, Hongjie</creator><creator>Gobel, Verena</creator><general>MyJove Corporation</general><scope>BEELZ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20171003</creationdate><title>The C. elegans Intestine As a Model for Intercellular Lumen Morphogenesis and In Vivo Polarized Membrane Biogenesis at the Single-cell Level: Labeling by Antibody Staining, RNAi Loss-of-function Analysis and Imaging</title><author>Zhang, Nan ; Khan, Liakot A ; Membreno, Edward ; Jafari, Gholamali ; Yan, Siyang ; Zhang, Hongjie ; Gobel, Verena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-1e700448d8d1886db1840bc66da913f0119b51f414f2af328fda91734705453f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Antibodies - chemistry</topic><topic>Caenorhabditis elegans - anatomy &amp; histology</topic><topic>Caenorhabditis elegans - growth &amp; development</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Developmental Biology</topic><topic>Intestines - anatomy &amp; histology</topic><topic>Intestines - diagnostic imaging</topic><topic>Intestines - physiology</topic><topic>Membranes - anatomy &amp; histology</topic><topic>Membranes - growth &amp; development</topic><topic>Membranes - physiology</topic><topic>Morphogenesis - physiology</topic><topic>Organelle Biogenesis</topic><topic>RNA Interference - physiology</topic><topic>Staining and Labeling - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Khan, Liakot A</creatorcontrib><creatorcontrib>Membreno, Edward</creatorcontrib><creatorcontrib>Jafari, Gholamali</creatorcontrib><creatorcontrib>Yan, Siyang</creatorcontrib><creatorcontrib>Zhang, Hongjie</creatorcontrib><creatorcontrib>Gobel, Verena</creatorcontrib><collection>JoVE Journal: Developmental Biology</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Visualized Experiments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Nan</au><au>Khan, Liakot A</au><au>Membreno, Edward</au><au>Jafari, Gholamali</au><au>Yan, Siyang</au><au>Zhang, Hongjie</au><au>Gobel, Verena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The C. elegans Intestine As a Model for Intercellular Lumen Morphogenesis and In Vivo Polarized Membrane Biogenesis at the Single-cell Level: Labeling by Antibody Staining, RNAi Loss-of-function Analysis and Imaging</atitle><jtitle>Journal of Visualized Experiments</jtitle><addtitle>J Vis Exp</addtitle><date>2017-10-03</date><risdate>2017</risdate><issue>128</issue><issn>1940-087X</issn><eissn>1940-087X</eissn><abstract>Multicellular tubes, fundamental units of all internal organs, are composed of polarized epithelial or endothelial cells, with apical membranes lining the lumen and basolateral membranes contacting each other and/or the extracellular matrix. How this distinctive membrane asymmetry is established and maintained during organ morphogenesis is still an unresolved question of cell biology. This protocol describes the C. elegans intestine as a model for the analysis of polarized membrane biogenesis during tube morphogenesis, with emphasis on apical membrane and lumen biogenesis. The C. elegans twenty-cell single-layered intestinal epithelium is arranged into a simple bilaterally symmetrical tube, permitting analysis on a single-cell level. Membrane polarization occurs concomitantly with polarized cell division and migration during early embryogenesis, but de novo polarized membrane biogenesis continues throughout larval growth, when cells no longer proliferate and move. The latter setting allows one to separate subcellular changes that simultaneously mediate these different polarizing processes, difficult to distinguish in most polarity models. Apical-, basolateral membrane-, junctional-, cytoskeletal- and endomembrane components can be labeled and tracked throughout development by GFP fusion proteins, or assessed by in situ antibody staining. Together with the organism's genetic versatility, the C. elegans intestine thus provides a unique in vivo model for the visual, developmental, and molecular genetic analysis of polarized membrane and tube biogenesis. The specific methods (all standard) described here include how to: label intestinal subcellular components by antibody staining; analyze genes involved in polarized membrane biogenesis by loss-of-function studies adapted to the typically essential tubulogenesis genes; assess polarity defects during different developmental stages; interpret phenotypes by epifluorescence, differential interference contrast (DIC) and confocal microscopy; quantify visual defects. This protocol can be adapted to analyze any of the often highly conserved molecules involved in epithelial polarity, membrane biogenesis, tube and lumen morphogenesis.</abstract><cop>United States</cop><pub>MyJove Corporation</pub><pmid>28994799</pmid><doi>10.3791/56100</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1940-087X
ispartof Journal of Visualized Experiments, 2017-10 (128)
issn 1940-087X
1940-087X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5628585
source Journal of Visualized Experiments : JoVE
subjects Animals
Antibodies - chemistry
Caenorhabditis elegans - anatomy & histology
Caenorhabditis elegans - growth & development
Caenorhabditis elegans - physiology
Developmental Biology
Intestines - anatomy & histology
Intestines - diagnostic imaging
Intestines - physiology
Membranes - anatomy & histology
Membranes - growth & development
Membranes - physiology
Morphogenesis - physiology
Organelle Biogenesis
RNA Interference - physiology
Staining and Labeling - methods
title The C. elegans Intestine As a Model for Intercellular Lumen Morphogenesis and In Vivo Polarized Membrane Biogenesis at the Single-cell Level: Labeling by Antibody Staining, RNAi Loss-of-function Analysis and Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_223&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20C.%20elegans%20Intestine%20As%20a%20Model%20for%20Intercellular%20Lumen%20Morphogenesis%20and%20In%20Vivo%20Polarized%20Membrane%20Biogenesis%20at%20the%20Single-cell%20Level:%20Labeling%20by%20Antibody%20Staining,%20RNAi%20Loss-of-function%20Analysis%20and%20Imaging&rft.jtitle=Journal%20of%20Visualized%20Experiments&rft.au=Zhang,%20Nan&rft.date=2017-10-03&rft.issue=128&rft.issn=1940-087X&rft.eissn=1940-087X&rft_id=info:doi/10.3791/56100&rft_dat=%3Cproquest_223%3E1949695708%3C/proquest_223%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949695708&rft_id=info:pmid/28994799&rfr_iscdi=true