Lack of interleukin‐6 in the tumor microenvironment augments type‐1 immunity and increases the efficacy of cancer immunotherapy

Conquering immunosuppression in tumor microenvironments is crucial for effective cancer immunotherapy. It is well known that interleukin (IL)‐6, a pleiotropic cytokine, is produced in the tumor‐bearing state. In the present study, we investigated the precise effects of IL‐6 on antitumor immunity and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer science 2017-10, Vol.108 (10), p.1959-1966
Hauptverfasser: Ohno, Yosuke, Toyoshima, Yujiro, Yurino, Hideaki, Monma, Norikazu, Xiang, Huihui, Sumida, Kentaro, Kaneumi, Shun, Terada, Satoshi, Hashimoto, Shinichi, Ikeo, Kazuho, Homma, Shigenori, Kawamura, Hideki, Takahashi, Norihiko, Taketomi, Akinobu, Kitamura, Hidemitsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1966
container_issue 10
container_start_page 1959
container_title Cancer science
container_volume 108
creator Ohno, Yosuke
Toyoshima, Yujiro
Yurino, Hideaki
Monma, Norikazu
Xiang, Huihui
Sumida, Kentaro
Kaneumi, Shun
Terada, Satoshi
Hashimoto, Shinichi
Ikeo, Kazuho
Homma, Shigenori
Kawamura, Hideki
Takahashi, Norihiko
Taketomi, Akinobu
Kitamura, Hidemitsu
description Conquering immunosuppression in tumor microenvironments is crucial for effective cancer immunotherapy. It is well known that interleukin (IL)‐6, a pleiotropic cytokine, is produced in the tumor‐bearing state. In the present study, we investigated the precise effects of IL‐6 on antitumor immunity and the subsequent tumorigenesis in tumor‐bearing hosts. CT26 cells, a murine colon cancer cell line, were intradermally injected into wild‐type and IL‐6‐deficient mice. As a result, we found that tumor growth was decreased significantly in IL‐6‐deficient mice compared with wild‐type mice and the reduction was abrogated by depletion of CD8+ T cells. We further evaluated the immune status of tumor microenvironments and confirmed that mature dendritic cells, helper T cells and cytotoxic T cells were highly accumulated in tumor sites under the IL‐6‐deficient condition. In addition, higher numbers of interferon (IFN)‐γ‐producing T cells were present in the tumor tissues of IL‐6‐deficient mice compared with wild‐type mice. Surface expression levels of programmed death‐ligand 1 (PD‐L1) and MHC class I on CT26 cells were enhanced under the IL‐6‐deficient condition in vivo and by IFN‐γ stimulation in vitro. Finally, we confirmed that in vivo injection of an anti‐PD‐L1 antibody or a Toll‐like receptor 3 ligand, polyinosinic‐polycytidylic acid, effectively inhibited tumorigenesis under the IL‐6‐deficient condition. Based on these findings, we speculate that a lack of IL‐6 produced in tumor‐bearing host augments induction of antitumor effector T cells and inhibits tumorigenesis in vivo, suggesting that IL‐6 signaling may be a promising target for the development of effective cancer immunotherapies. IL‐6 produced in the tumor hosts suppresses antitumor immunity involving the activation of effector T cells and dendritic cells. Lack of IL‐6 facilitates cancer immunotherapies using immune checkpoint inhibitors and immunological adjuvants.
doi_str_mv 10.1111/cas.13330
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5623732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289738522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5770-8ec3947f89e4e74b7087f07cd2bf4fa5c354fdfc868ee373003e1cc1b6aad4e23</originalsourceid><addsrcrecordid>eNp1kcFO3DAQhq0K1N0uHHgBZIlTD2Gd2ImTC9JqVdpKK3EAzpbXGYNhYy92QpVbJV6gz9gnqbOhKzjgy3g0n_-Z8Y_QSUrO03jmSobzlFJKPqFpSlmVcEKKg92dJxWh2QR9CeGBEFqwin1Gk6zkrOBVNUUvK6kesdPY2Bb8BrpHY__-_lPEHLf3gNuucR43RnkH9tl4ZxuwLZbd3RADbvstRD7Fpmk6a9oeS1vHx8qDDBB2GqC1UVL1QxslrQI_0i4Wvdz2R-hQy02A49c4Q7eX326WP5LV1fefy8UqUTnnJClB0YpxXVbAgLM1JyXXhKs6W2umZa5oznStVVmUAJTTuC6kSqXrQsqaQUZn6GLU3XbrBmoVF_ByI7beNNL3wkkj3lesuRd37lnkRRb1BoGzVwHvnjoIrXhwnbdxZpFlZcVpmWcD9XWk4p-F4EHvO6REDH6J6JfY-RXZ07cj7cn_BkVgPgK_zAb6j5XEcnE9Sv4DcCalWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289738522</pqid></control><display><type>article</type><title>Lack of interleukin‐6 in the tumor microenvironment augments type‐1 immunity and increases the efficacy of cancer immunotherapy</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><creator>Ohno, Yosuke ; Toyoshima, Yujiro ; Yurino, Hideaki ; Monma, Norikazu ; Xiang, Huihui ; Sumida, Kentaro ; Kaneumi, Shun ; Terada, Satoshi ; Hashimoto, Shinichi ; Ikeo, Kazuho ; Homma, Shigenori ; Kawamura, Hideki ; Takahashi, Norihiko ; Taketomi, Akinobu ; Kitamura, Hidemitsu</creator><creatorcontrib>Ohno, Yosuke ; Toyoshima, Yujiro ; Yurino, Hideaki ; Monma, Norikazu ; Xiang, Huihui ; Sumida, Kentaro ; Kaneumi, Shun ; Terada, Satoshi ; Hashimoto, Shinichi ; Ikeo, Kazuho ; Homma, Shigenori ; Kawamura, Hideki ; Takahashi, Norihiko ; Taketomi, Akinobu ; Kitamura, Hidemitsu</creatorcontrib><description>Conquering immunosuppression in tumor microenvironments is crucial for effective cancer immunotherapy. It is well known that interleukin (IL)‐6, a pleiotropic cytokine, is produced in the tumor‐bearing state. In the present study, we investigated the precise effects of IL‐6 on antitumor immunity and the subsequent tumorigenesis in tumor‐bearing hosts. CT26 cells, a murine colon cancer cell line, were intradermally injected into wild‐type and IL‐6‐deficient mice. As a result, we found that tumor growth was decreased significantly in IL‐6‐deficient mice compared with wild‐type mice and the reduction was abrogated by depletion of CD8+ T cells. We further evaluated the immune status of tumor microenvironments and confirmed that mature dendritic cells, helper T cells and cytotoxic T cells were highly accumulated in tumor sites under the IL‐6‐deficient condition. In addition, higher numbers of interferon (IFN)‐γ‐producing T cells were present in the tumor tissues of IL‐6‐deficient mice compared with wild‐type mice. Surface expression levels of programmed death‐ligand 1 (PD‐L1) and MHC class I on CT26 cells were enhanced under the IL‐6‐deficient condition in vivo and by IFN‐γ stimulation in vitro. Finally, we confirmed that in vivo injection of an anti‐PD‐L1 antibody or a Toll‐like receptor 3 ligand, polyinosinic‐polycytidylic acid, effectively inhibited tumorigenesis under the IL‐6‐deficient condition. Based on these findings, we speculate that a lack of IL‐6 produced in tumor‐bearing host augments induction of antitumor effector T cells and inhibits tumorigenesis in vivo, suggesting that IL‐6 signaling may be a promising target for the development of effective cancer immunotherapies. IL‐6 produced in the tumor hosts suppresses antitumor immunity involving the activation of effector T cells and dendritic cells. Lack of IL‐6 facilitates cancer immunotherapies using immune checkpoint inhibitors and immunological adjuvants.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/cas.13330</identifier><identifier>PMID: 28746799</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Antibodies, Monoclonal - administration &amp; dosage ; Antibodies, Monoclonal - pharmacology ; Antibodies, Monoclonal, Humanized ; Antigens ; Antitumor activity ; Apoptosis ; Cancer immunotherapy ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; Cell Line, Tumor ; Cloning ; Colon cancer ; Colonic Neoplasms - genetics ; Colonic Neoplasms - immunology ; Colonic Neoplasms - therapy ; Colorectal cancer ; Cytokines ; Cytotoxic T cells ; Cytotoxicity ; Dendritic cells ; Dendritic Cells - immunology ; Drug Synergism ; Effector cells ; Fibroblasts ; Flow cytometry ; Gene expression ; Gene Expression Regulation, Neoplastic ; Immune status ; Immunoglobulins ; Immunology ; Immunosuppression ; Immunotherapy ; Immunotherapy - methods ; Interferon ; Interferon-gamma - metabolism ; interferon‐γ ; Interleukin-6 - deficiency ; Interleukin-6 - genetics ; interleukin‐6 ; Kinases ; Laboratory animals ; Ligands ; Lymphocytes ; Lymphocytes T ; Major histocompatibility complex ; Mice ; Microenvironments ; Original ; PD-L1 protein ; programmed death‐ligand 1 ; Studies ; T-Lymphocytes, Cytotoxic - immunology ; T-Lymphocytes, Helper-Inducer - immunology ; Toll-like receptors ; Tumor Microenvironment - drug effects ; Tumorigenesis ; Xenograft Model Antitumor Assays</subject><ispartof>Cancer science, 2017-10, Vol.108 (10), p.1959-1966</ispartof><rights>2017 The Authors. published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2017 The Authors. Cancer Science published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5770-8ec3947f89e4e74b7087f07cd2bf4fa5c354fdfc868ee373003e1cc1b6aad4e23</citedby><cites>FETCH-LOGICAL-c5770-8ec3947f89e4e74b7087f07cd2bf4fa5c354fdfc868ee373003e1cc1b6aad4e23</cites><orcidid>0000-0001-7006-6767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623732/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623732/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28746799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohno, Yosuke</creatorcontrib><creatorcontrib>Toyoshima, Yujiro</creatorcontrib><creatorcontrib>Yurino, Hideaki</creatorcontrib><creatorcontrib>Monma, Norikazu</creatorcontrib><creatorcontrib>Xiang, Huihui</creatorcontrib><creatorcontrib>Sumida, Kentaro</creatorcontrib><creatorcontrib>Kaneumi, Shun</creatorcontrib><creatorcontrib>Terada, Satoshi</creatorcontrib><creatorcontrib>Hashimoto, Shinichi</creatorcontrib><creatorcontrib>Ikeo, Kazuho</creatorcontrib><creatorcontrib>Homma, Shigenori</creatorcontrib><creatorcontrib>Kawamura, Hideki</creatorcontrib><creatorcontrib>Takahashi, Norihiko</creatorcontrib><creatorcontrib>Taketomi, Akinobu</creatorcontrib><creatorcontrib>Kitamura, Hidemitsu</creatorcontrib><title>Lack of interleukin‐6 in the tumor microenvironment augments type‐1 immunity and increases the efficacy of cancer immunotherapy</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>Conquering immunosuppression in tumor microenvironments is crucial for effective cancer immunotherapy. It is well known that interleukin (IL)‐6, a pleiotropic cytokine, is produced in the tumor‐bearing state. In the present study, we investigated the precise effects of IL‐6 on antitumor immunity and the subsequent tumorigenesis in tumor‐bearing hosts. CT26 cells, a murine colon cancer cell line, were intradermally injected into wild‐type and IL‐6‐deficient mice. As a result, we found that tumor growth was decreased significantly in IL‐6‐deficient mice compared with wild‐type mice and the reduction was abrogated by depletion of CD8+ T cells. We further evaluated the immune status of tumor microenvironments and confirmed that mature dendritic cells, helper T cells and cytotoxic T cells were highly accumulated in tumor sites under the IL‐6‐deficient condition. In addition, higher numbers of interferon (IFN)‐γ‐producing T cells were present in the tumor tissues of IL‐6‐deficient mice compared with wild‐type mice. Surface expression levels of programmed death‐ligand 1 (PD‐L1) and MHC class I on CT26 cells were enhanced under the IL‐6‐deficient condition in vivo and by IFN‐γ stimulation in vitro. Finally, we confirmed that in vivo injection of an anti‐PD‐L1 antibody or a Toll‐like receptor 3 ligand, polyinosinic‐polycytidylic acid, effectively inhibited tumorigenesis under the IL‐6‐deficient condition. Based on these findings, we speculate that a lack of IL‐6 produced in tumor‐bearing host augments induction of antitumor effector T cells and inhibits tumorigenesis in vivo, suggesting that IL‐6 signaling may be a promising target for the development of effective cancer immunotherapies. IL‐6 produced in the tumor hosts suppresses antitumor immunity involving the activation of effector T cells and dendritic cells. Lack of IL‐6 facilitates cancer immunotherapies using immune checkpoint inhibitors and immunological adjuvants.</description><subject>Animals</subject><subject>Antibodies, Monoclonal - administration &amp; dosage</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Antibodies, Monoclonal, Humanized</subject><subject>Antigens</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>Cancer immunotherapy</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>Cell Line, Tumor</subject><subject>Cloning</subject><subject>Colon cancer</subject><subject>Colonic Neoplasms - genetics</subject><subject>Colonic Neoplasms - immunology</subject><subject>Colonic Neoplasms - therapy</subject><subject>Colorectal cancer</subject><subject>Cytokines</subject><subject>Cytotoxic T cells</subject><subject>Cytotoxicity</subject><subject>Dendritic cells</subject><subject>Dendritic Cells - immunology</subject><subject>Drug Synergism</subject><subject>Effector cells</subject><subject>Fibroblasts</subject><subject>Flow cytometry</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Immune status</subject><subject>Immunoglobulins</subject><subject>Immunology</subject><subject>Immunosuppression</subject><subject>Immunotherapy</subject><subject>Immunotherapy - methods</subject><subject>Interferon</subject><subject>Interferon-gamma - metabolism</subject><subject>interferon‐γ</subject><subject>Interleukin-6 - deficiency</subject><subject>Interleukin-6 - genetics</subject><subject>interleukin‐6</subject><subject>Kinases</subject><subject>Laboratory animals</subject><subject>Ligands</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Major histocompatibility complex</subject><subject>Mice</subject><subject>Microenvironments</subject><subject>Original</subject><subject>PD-L1 protein</subject><subject>programmed death‐ligand 1</subject><subject>Studies</subject><subject>T-Lymphocytes, Cytotoxic - immunology</subject><subject>T-Lymphocytes, Helper-Inducer - immunology</subject><subject>Toll-like receptors</subject><subject>Tumor Microenvironment - drug effects</subject><subject>Tumorigenesis</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kcFO3DAQhq0K1N0uHHgBZIlTD2Gd2ImTC9JqVdpKK3EAzpbXGYNhYy92QpVbJV6gz9gnqbOhKzjgy3g0n_-Z8Y_QSUrO03jmSobzlFJKPqFpSlmVcEKKg92dJxWh2QR9CeGBEFqwin1Gk6zkrOBVNUUvK6kesdPY2Bb8BrpHY__-_lPEHLf3gNuucR43RnkH9tl4ZxuwLZbd3RADbvstRD7Fpmk6a9oeS1vHx8qDDBB2GqC1UVL1QxslrQI_0i4Wvdz2R-hQy02A49c4Q7eX326WP5LV1fefy8UqUTnnJClB0YpxXVbAgLM1JyXXhKs6W2umZa5oznStVVmUAJTTuC6kSqXrQsqaQUZn6GLU3XbrBmoVF_ByI7beNNL3wkkj3lesuRd37lnkRRb1BoGzVwHvnjoIrXhwnbdxZpFlZcVpmWcD9XWk4p-F4EHvO6REDH6J6JfY-RXZ07cj7cn_BkVgPgK_zAb6j5XEcnE9Sv4DcCalWA</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Ohno, Yosuke</creator><creator>Toyoshima, Yujiro</creator><creator>Yurino, Hideaki</creator><creator>Monma, Norikazu</creator><creator>Xiang, Huihui</creator><creator>Sumida, Kentaro</creator><creator>Kaneumi, Shun</creator><creator>Terada, Satoshi</creator><creator>Hashimoto, Shinichi</creator><creator>Ikeo, Kazuho</creator><creator>Homma, Shigenori</creator><creator>Kawamura, Hideki</creator><creator>Takahashi, Norihiko</creator><creator>Taketomi, Akinobu</creator><creator>Kitamura, Hidemitsu</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7006-6767</orcidid></search><sort><creationdate>201710</creationdate><title>Lack of interleukin‐6 in the tumor microenvironment augments type‐1 immunity and increases the efficacy of cancer immunotherapy</title><author>Ohno, Yosuke ; Toyoshima, Yujiro ; Yurino, Hideaki ; Monma, Norikazu ; Xiang, Huihui ; Sumida, Kentaro ; Kaneumi, Shun ; Terada, Satoshi ; Hashimoto, Shinichi ; Ikeo, Kazuho ; Homma, Shigenori ; Kawamura, Hideki ; Takahashi, Norihiko ; Taketomi, Akinobu ; Kitamura, Hidemitsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5770-8ec3947f89e4e74b7087f07cd2bf4fa5c354fdfc868ee373003e1cc1b6aad4e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Antibodies, Monoclonal - administration &amp; dosage</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Antibodies, Monoclonal, Humanized</topic><topic>Antigens</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>Cancer immunotherapy</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>Cell Line, Tumor</topic><topic>Cloning</topic><topic>Colon cancer</topic><topic>Colonic Neoplasms - genetics</topic><topic>Colonic Neoplasms - immunology</topic><topic>Colonic Neoplasms - therapy</topic><topic>Colorectal cancer</topic><topic>Cytokines</topic><topic>Cytotoxic T cells</topic><topic>Cytotoxicity</topic><topic>Dendritic cells</topic><topic>Dendritic Cells - immunology</topic><topic>Drug Synergism</topic><topic>Effector cells</topic><topic>Fibroblasts</topic><topic>Flow cytometry</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Immune status</topic><topic>Immunoglobulins</topic><topic>Immunology</topic><topic>Immunosuppression</topic><topic>Immunotherapy</topic><topic>Immunotherapy - methods</topic><topic>Interferon</topic><topic>Interferon-gamma - metabolism</topic><topic>interferon‐γ</topic><topic>Interleukin-6 - deficiency</topic><topic>Interleukin-6 - genetics</topic><topic>interleukin‐6</topic><topic>Kinases</topic><topic>Laboratory animals</topic><topic>Ligands</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Major histocompatibility complex</topic><topic>Mice</topic><topic>Microenvironments</topic><topic>Original</topic><topic>PD-L1 protein</topic><topic>programmed death‐ligand 1</topic><topic>Studies</topic><topic>T-Lymphocytes, Cytotoxic - immunology</topic><topic>T-Lymphocytes, Helper-Inducer - immunology</topic><topic>Toll-like receptors</topic><topic>Tumor Microenvironment - drug effects</topic><topic>Tumorigenesis</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohno, Yosuke</creatorcontrib><creatorcontrib>Toyoshima, Yujiro</creatorcontrib><creatorcontrib>Yurino, Hideaki</creatorcontrib><creatorcontrib>Monma, Norikazu</creatorcontrib><creatorcontrib>Xiang, Huihui</creatorcontrib><creatorcontrib>Sumida, Kentaro</creatorcontrib><creatorcontrib>Kaneumi, Shun</creatorcontrib><creatorcontrib>Terada, Satoshi</creatorcontrib><creatorcontrib>Hashimoto, Shinichi</creatorcontrib><creatorcontrib>Ikeo, Kazuho</creatorcontrib><creatorcontrib>Homma, Shigenori</creatorcontrib><creatorcontrib>Kawamura, Hideki</creatorcontrib><creatorcontrib>Takahashi, Norihiko</creatorcontrib><creatorcontrib>Taketomi, Akinobu</creatorcontrib><creatorcontrib>Kitamura, Hidemitsu</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohno, Yosuke</au><au>Toyoshima, Yujiro</au><au>Yurino, Hideaki</au><au>Monma, Norikazu</au><au>Xiang, Huihui</au><au>Sumida, Kentaro</au><au>Kaneumi, Shun</au><au>Terada, Satoshi</au><au>Hashimoto, Shinichi</au><au>Ikeo, Kazuho</au><au>Homma, Shigenori</au><au>Kawamura, Hideki</au><au>Takahashi, Norihiko</au><au>Taketomi, Akinobu</au><au>Kitamura, Hidemitsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lack of interleukin‐6 in the tumor microenvironment augments type‐1 immunity and increases the efficacy of cancer immunotherapy</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2017-10</date><risdate>2017</risdate><volume>108</volume><issue>10</issue><spage>1959</spage><epage>1966</epage><pages>1959-1966</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>Conquering immunosuppression in tumor microenvironments is crucial for effective cancer immunotherapy. It is well known that interleukin (IL)‐6, a pleiotropic cytokine, is produced in the tumor‐bearing state. In the present study, we investigated the precise effects of IL‐6 on antitumor immunity and the subsequent tumorigenesis in tumor‐bearing hosts. CT26 cells, a murine colon cancer cell line, were intradermally injected into wild‐type and IL‐6‐deficient mice. As a result, we found that tumor growth was decreased significantly in IL‐6‐deficient mice compared with wild‐type mice and the reduction was abrogated by depletion of CD8+ T cells. We further evaluated the immune status of tumor microenvironments and confirmed that mature dendritic cells, helper T cells and cytotoxic T cells were highly accumulated in tumor sites under the IL‐6‐deficient condition. In addition, higher numbers of interferon (IFN)‐γ‐producing T cells were present in the tumor tissues of IL‐6‐deficient mice compared with wild‐type mice. Surface expression levels of programmed death‐ligand 1 (PD‐L1) and MHC class I on CT26 cells were enhanced under the IL‐6‐deficient condition in vivo and by IFN‐γ stimulation in vitro. Finally, we confirmed that in vivo injection of an anti‐PD‐L1 antibody or a Toll‐like receptor 3 ligand, polyinosinic‐polycytidylic acid, effectively inhibited tumorigenesis under the IL‐6‐deficient condition. Based on these findings, we speculate that a lack of IL‐6 produced in tumor‐bearing host augments induction of antitumor effector T cells and inhibits tumorigenesis in vivo, suggesting that IL‐6 signaling may be a promising target for the development of effective cancer immunotherapies. IL‐6 produced in the tumor hosts suppresses antitumor immunity involving the activation of effector T cells and dendritic cells. Lack of IL‐6 facilitates cancer immunotherapies using immune checkpoint inhibitors and immunological adjuvants.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>28746799</pmid><doi>10.1111/cas.13330</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7006-6767</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1347-9032
ispartof Cancer science, 2017-10, Vol.108 (10), p.1959-1966
issn 1347-9032
1349-7006
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5623732
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; PubMed Central
subjects Animals
Antibodies, Monoclonal - administration & dosage
Antibodies, Monoclonal - pharmacology
Antibodies, Monoclonal, Humanized
Antigens
Antitumor activity
Apoptosis
Cancer immunotherapy
CD8 antigen
CD8-Positive T-Lymphocytes - immunology
Cell Line, Tumor
Cloning
Colon cancer
Colonic Neoplasms - genetics
Colonic Neoplasms - immunology
Colonic Neoplasms - therapy
Colorectal cancer
Cytokines
Cytotoxic T cells
Cytotoxicity
Dendritic cells
Dendritic Cells - immunology
Drug Synergism
Effector cells
Fibroblasts
Flow cytometry
Gene expression
Gene Expression Regulation, Neoplastic
Immune status
Immunoglobulins
Immunology
Immunosuppression
Immunotherapy
Immunotherapy - methods
Interferon
Interferon-gamma - metabolism
interferon‐γ
Interleukin-6 - deficiency
Interleukin-6 - genetics
interleukin‐6
Kinases
Laboratory animals
Ligands
Lymphocytes
Lymphocytes T
Major histocompatibility complex
Mice
Microenvironments
Original
PD-L1 protein
programmed death‐ligand 1
Studies
T-Lymphocytes, Cytotoxic - immunology
T-Lymphocytes, Helper-Inducer - immunology
Toll-like receptors
Tumor Microenvironment - drug effects
Tumorigenesis
Xenograft Model Antitumor Assays
title Lack of interleukin‐6 in the tumor microenvironment augments type‐1 immunity and increases the efficacy of cancer immunotherapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lack%20of%20interleukin%E2%80%906%20in%20the%20tumor%20microenvironment%20augments%20type%E2%80%901%20immunity%20and%20increases%20the%20efficacy%20of%20cancer%20immunotherapy&rft.jtitle=Cancer%20science&rft.au=Ohno,%20Yosuke&rft.date=2017-10&rft.volume=108&rft.issue=10&rft.spage=1959&rft.epage=1966&rft.pages=1959-1966&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/cas.13330&rft_dat=%3Cproquest_pubme%3E2289738522%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289738522&rft_id=info:pmid/28746799&rfr_iscdi=true