Lack of interleukin‐6 in the tumor microenvironment augments type‐1 immunity and increases the efficacy of cancer immunotherapy
Conquering immunosuppression in tumor microenvironments is crucial for effective cancer immunotherapy. It is well known that interleukin (IL)‐6, a pleiotropic cytokine, is produced in the tumor‐bearing state. In the present study, we investigated the precise effects of IL‐6 on antitumor immunity and...
Gespeichert in:
Veröffentlicht in: | Cancer science 2017-10, Vol.108 (10), p.1959-1966 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1966 |
---|---|
container_issue | 10 |
container_start_page | 1959 |
container_title | Cancer science |
container_volume | 108 |
creator | Ohno, Yosuke Toyoshima, Yujiro Yurino, Hideaki Monma, Norikazu Xiang, Huihui Sumida, Kentaro Kaneumi, Shun Terada, Satoshi Hashimoto, Shinichi Ikeo, Kazuho Homma, Shigenori Kawamura, Hideki Takahashi, Norihiko Taketomi, Akinobu Kitamura, Hidemitsu |
description | Conquering immunosuppression in tumor microenvironments is crucial for effective cancer immunotherapy. It is well known that interleukin (IL)‐6, a pleiotropic cytokine, is produced in the tumor‐bearing state. In the present study, we investigated the precise effects of IL‐6 on antitumor immunity and the subsequent tumorigenesis in tumor‐bearing hosts. CT26 cells, a murine colon cancer cell line, were intradermally injected into wild‐type and IL‐6‐deficient mice. As a result, we found that tumor growth was decreased significantly in IL‐6‐deficient mice compared with wild‐type mice and the reduction was abrogated by depletion of CD8+ T cells. We further evaluated the immune status of tumor microenvironments and confirmed that mature dendritic cells, helper T cells and cytotoxic T cells were highly accumulated in tumor sites under the IL‐6‐deficient condition. In addition, higher numbers of interferon (IFN)‐γ‐producing T cells were present in the tumor tissues of IL‐6‐deficient mice compared with wild‐type mice. Surface expression levels of programmed death‐ligand 1 (PD‐L1) and MHC class I on CT26 cells were enhanced under the IL‐6‐deficient condition in vivo and by IFN‐γ stimulation in vitro. Finally, we confirmed that in vivo injection of an anti‐PD‐L1 antibody or a Toll‐like receptor 3 ligand, polyinosinic‐polycytidylic acid, effectively inhibited tumorigenesis under the IL‐6‐deficient condition. Based on these findings, we speculate that a lack of IL‐6 produced in tumor‐bearing host augments induction of antitumor effector T cells and inhibits tumorigenesis in vivo, suggesting that IL‐6 signaling may be a promising target for the development of effective cancer immunotherapies.
IL‐6 produced in the tumor hosts suppresses antitumor immunity involving the activation of effector T cells and dendritic cells. Lack of IL‐6 facilitates cancer immunotherapies using immune checkpoint inhibitors and immunological adjuvants. |
doi_str_mv | 10.1111/cas.13330 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5623732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289738522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5770-8ec3947f89e4e74b7087f07cd2bf4fa5c354fdfc868ee373003e1cc1b6aad4e23</originalsourceid><addsrcrecordid>eNp1kcFO3DAQhq0K1N0uHHgBZIlTD2Gd2ImTC9JqVdpKK3EAzpbXGYNhYy92QpVbJV6gz9gnqbOhKzjgy3g0n_-Z8Y_QSUrO03jmSobzlFJKPqFpSlmVcEKKg92dJxWh2QR9CeGBEFqwin1Gk6zkrOBVNUUvK6kesdPY2Bb8BrpHY__-_lPEHLf3gNuucR43RnkH9tl4ZxuwLZbd3RADbvstRD7Fpmk6a9oeS1vHx8qDDBB2GqC1UVL1QxslrQI_0i4Wvdz2R-hQy02A49c4Q7eX326WP5LV1fefy8UqUTnnJClB0YpxXVbAgLM1JyXXhKs6W2umZa5oznStVVmUAJTTuC6kSqXrQsqaQUZn6GLU3XbrBmoVF_ByI7beNNL3wkkj3lesuRd37lnkRRb1BoGzVwHvnjoIrXhwnbdxZpFlZcVpmWcD9XWk4p-F4EHvO6REDH6J6JfY-RXZ07cj7cn_BkVgPgK_zAb6j5XEcnE9Sv4DcCalWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289738522</pqid></control><display><type>article</type><title>Lack of interleukin‐6 in the tumor microenvironment augments type‐1 immunity and increases the efficacy of cancer immunotherapy</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><creator>Ohno, Yosuke ; Toyoshima, Yujiro ; Yurino, Hideaki ; Monma, Norikazu ; Xiang, Huihui ; Sumida, Kentaro ; Kaneumi, Shun ; Terada, Satoshi ; Hashimoto, Shinichi ; Ikeo, Kazuho ; Homma, Shigenori ; Kawamura, Hideki ; Takahashi, Norihiko ; Taketomi, Akinobu ; Kitamura, Hidemitsu</creator><creatorcontrib>Ohno, Yosuke ; Toyoshima, Yujiro ; Yurino, Hideaki ; Monma, Norikazu ; Xiang, Huihui ; Sumida, Kentaro ; Kaneumi, Shun ; Terada, Satoshi ; Hashimoto, Shinichi ; Ikeo, Kazuho ; Homma, Shigenori ; Kawamura, Hideki ; Takahashi, Norihiko ; Taketomi, Akinobu ; Kitamura, Hidemitsu</creatorcontrib><description>Conquering immunosuppression in tumor microenvironments is crucial for effective cancer immunotherapy. It is well known that interleukin (IL)‐6, a pleiotropic cytokine, is produced in the tumor‐bearing state. In the present study, we investigated the precise effects of IL‐6 on antitumor immunity and the subsequent tumorigenesis in tumor‐bearing hosts. CT26 cells, a murine colon cancer cell line, were intradermally injected into wild‐type and IL‐6‐deficient mice. As a result, we found that tumor growth was decreased significantly in IL‐6‐deficient mice compared with wild‐type mice and the reduction was abrogated by depletion of CD8+ T cells. We further evaluated the immune status of tumor microenvironments and confirmed that mature dendritic cells, helper T cells and cytotoxic T cells were highly accumulated in tumor sites under the IL‐6‐deficient condition. In addition, higher numbers of interferon (IFN)‐γ‐producing T cells were present in the tumor tissues of IL‐6‐deficient mice compared with wild‐type mice. Surface expression levels of programmed death‐ligand 1 (PD‐L1) and MHC class I on CT26 cells were enhanced under the IL‐6‐deficient condition in vivo and by IFN‐γ stimulation in vitro. Finally, we confirmed that in vivo injection of an anti‐PD‐L1 antibody or a Toll‐like receptor 3 ligand, polyinosinic‐polycytidylic acid, effectively inhibited tumorigenesis under the IL‐6‐deficient condition. Based on these findings, we speculate that a lack of IL‐6 produced in tumor‐bearing host augments induction of antitumor effector T cells and inhibits tumorigenesis in vivo, suggesting that IL‐6 signaling may be a promising target for the development of effective cancer immunotherapies.
IL‐6 produced in the tumor hosts suppresses antitumor immunity involving the activation of effector T cells and dendritic cells. Lack of IL‐6 facilitates cancer immunotherapies using immune checkpoint inhibitors and immunological adjuvants.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/cas.13330</identifier><identifier>PMID: 28746799</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Animals ; Antibodies, Monoclonal - administration & dosage ; Antibodies, Monoclonal - pharmacology ; Antibodies, Monoclonal, Humanized ; Antigens ; Antitumor activity ; Apoptosis ; Cancer immunotherapy ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; Cell Line, Tumor ; Cloning ; Colon cancer ; Colonic Neoplasms - genetics ; Colonic Neoplasms - immunology ; Colonic Neoplasms - therapy ; Colorectal cancer ; Cytokines ; Cytotoxic T cells ; Cytotoxicity ; Dendritic cells ; Dendritic Cells - immunology ; Drug Synergism ; Effector cells ; Fibroblasts ; Flow cytometry ; Gene expression ; Gene Expression Regulation, Neoplastic ; Immune status ; Immunoglobulins ; Immunology ; Immunosuppression ; Immunotherapy ; Immunotherapy - methods ; Interferon ; Interferon-gamma - metabolism ; interferon‐γ ; Interleukin-6 - deficiency ; Interleukin-6 - genetics ; interleukin‐6 ; Kinases ; Laboratory animals ; Ligands ; Lymphocytes ; Lymphocytes T ; Major histocompatibility complex ; Mice ; Microenvironments ; Original ; PD-L1 protein ; programmed death‐ligand 1 ; Studies ; T-Lymphocytes, Cytotoxic - immunology ; T-Lymphocytes, Helper-Inducer - immunology ; Toll-like receptors ; Tumor Microenvironment - drug effects ; Tumorigenesis ; Xenograft Model Antitumor Assays</subject><ispartof>Cancer science, 2017-10, Vol.108 (10), p.1959-1966</ispartof><rights>2017 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5770-8ec3947f89e4e74b7087f07cd2bf4fa5c354fdfc868ee373003e1cc1b6aad4e23</citedby><cites>FETCH-LOGICAL-c5770-8ec3947f89e4e74b7087f07cd2bf4fa5c354fdfc868ee373003e1cc1b6aad4e23</cites><orcidid>0000-0001-7006-6767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623732/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623732/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28746799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohno, Yosuke</creatorcontrib><creatorcontrib>Toyoshima, Yujiro</creatorcontrib><creatorcontrib>Yurino, Hideaki</creatorcontrib><creatorcontrib>Monma, Norikazu</creatorcontrib><creatorcontrib>Xiang, Huihui</creatorcontrib><creatorcontrib>Sumida, Kentaro</creatorcontrib><creatorcontrib>Kaneumi, Shun</creatorcontrib><creatorcontrib>Terada, Satoshi</creatorcontrib><creatorcontrib>Hashimoto, Shinichi</creatorcontrib><creatorcontrib>Ikeo, Kazuho</creatorcontrib><creatorcontrib>Homma, Shigenori</creatorcontrib><creatorcontrib>Kawamura, Hideki</creatorcontrib><creatorcontrib>Takahashi, Norihiko</creatorcontrib><creatorcontrib>Taketomi, Akinobu</creatorcontrib><creatorcontrib>Kitamura, Hidemitsu</creatorcontrib><title>Lack of interleukin‐6 in the tumor microenvironment augments type‐1 immunity and increases the efficacy of cancer immunotherapy</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>Conquering immunosuppression in tumor microenvironments is crucial for effective cancer immunotherapy. It is well known that interleukin (IL)‐6, a pleiotropic cytokine, is produced in the tumor‐bearing state. In the present study, we investigated the precise effects of IL‐6 on antitumor immunity and the subsequent tumorigenesis in tumor‐bearing hosts. CT26 cells, a murine colon cancer cell line, were intradermally injected into wild‐type and IL‐6‐deficient mice. As a result, we found that tumor growth was decreased significantly in IL‐6‐deficient mice compared with wild‐type mice and the reduction was abrogated by depletion of CD8+ T cells. We further evaluated the immune status of tumor microenvironments and confirmed that mature dendritic cells, helper T cells and cytotoxic T cells were highly accumulated in tumor sites under the IL‐6‐deficient condition. In addition, higher numbers of interferon (IFN)‐γ‐producing T cells were present in the tumor tissues of IL‐6‐deficient mice compared with wild‐type mice. Surface expression levels of programmed death‐ligand 1 (PD‐L1) and MHC class I on CT26 cells were enhanced under the IL‐6‐deficient condition in vivo and by IFN‐γ stimulation in vitro. Finally, we confirmed that in vivo injection of an anti‐PD‐L1 antibody or a Toll‐like receptor 3 ligand, polyinosinic‐polycytidylic acid, effectively inhibited tumorigenesis under the IL‐6‐deficient condition. Based on these findings, we speculate that a lack of IL‐6 produced in tumor‐bearing host augments induction of antitumor effector T cells and inhibits tumorigenesis in vivo, suggesting that IL‐6 signaling may be a promising target for the development of effective cancer immunotherapies.
IL‐6 produced in the tumor hosts suppresses antitumor immunity involving the activation of effector T cells and dendritic cells. Lack of IL‐6 facilitates cancer immunotherapies using immune checkpoint inhibitors and immunological adjuvants.</description><subject>Animals</subject><subject>Antibodies, Monoclonal - administration & dosage</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Antibodies, Monoclonal, Humanized</subject><subject>Antigens</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>Cancer immunotherapy</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>Cell Line, Tumor</subject><subject>Cloning</subject><subject>Colon cancer</subject><subject>Colonic Neoplasms - genetics</subject><subject>Colonic Neoplasms - immunology</subject><subject>Colonic Neoplasms - therapy</subject><subject>Colorectal cancer</subject><subject>Cytokines</subject><subject>Cytotoxic T cells</subject><subject>Cytotoxicity</subject><subject>Dendritic cells</subject><subject>Dendritic Cells - immunology</subject><subject>Drug Synergism</subject><subject>Effector cells</subject><subject>Fibroblasts</subject><subject>Flow cytometry</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Immune status</subject><subject>Immunoglobulins</subject><subject>Immunology</subject><subject>Immunosuppression</subject><subject>Immunotherapy</subject><subject>Immunotherapy - methods</subject><subject>Interferon</subject><subject>Interferon-gamma - metabolism</subject><subject>interferon‐γ</subject><subject>Interleukin-6 - deficiency</subject><subject>Interleukin-6 - genetics</subject><subject>interleukin‐6</subject><subject>Kinases</subject><subject>Laboratory animals</subject><subject>Ligands</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Major histocompatibility complex</subject><subject>Mice</subject><subject>Microenvironments</subject><subject>Original</subject><subject>PD-L1 protein</subject><subject>programmed death‐ligand 1</subject><subject>Studies</subject><subject>T-Lymphocytes, Cytotoxic - immunology</subject><subject>T-Lymphocytes, Helper-Inducer - immunology</subject><subject>Toll-like receptors</subject><subject>Tumor Microenvironment - drug effects</subject><subject>Tumorigenesis</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kcFO3DAQhq0K1N0uHHgBZIlTD2Gd2ImTC9JqVdpKK3EAzpbXGYNhYy92QpVbJV6gz9gnqbOhKzjgy3g0n_-Z8Y_QSUrO03jmSobzlFJKPqFpSlmVcEKKg92dJxWh2QR9CeGBEFqwin1Gk6zkrOBVNUUvK6kesdPY2Bb8BrpHY__-_lPEHLf3gNuucR43RnkH9tl4ZxuwLZbd3RADbvstRD7Fpmk6a9oeS1vHx8qDDBB2GqC1UVL1QxslrQI_0i4Wvdz2R-hQy02A49c4Q7eX326WP5LV1fefy8UqUTnnJClB0YpxXVbAgLM1JyXXhKs6W2umZa5oznStVVmUAJTTuC6kSqXrQsqaQUZn6GLU3XbrBmoVF_ByI7beNNL3wkkj3lesuRd37lnkRRb1BoGzVwHvnjoIrXhwnbdxZpFlZcVpmWcD9XWk4p-F4EHvO6REDH6J6JfY-RXZ07cj7cn_BkVgPgK_zAb6j5XEcnE9Sv4DcCalWA</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Ohno, Yosuke</creator><creator>Toyoshima, Yujiro</creator><creator>Yurino, Hideaki</creator><creator>Monma, Norikazu</creator><creator>Xiang, Huihui</creator><creator>Sumida, Kentaro</creator><creator>Kaneumi, Shun</creator><creator>Terada, Satoshi</creator><creator>Hashimoto, Shinichi</creator><creator>Ikeo, Kazuho</creator><creator>Homma, Shigenori</creator><creator>Kawamura, Hideki</creator><creator>Takahashi, Norihiko</creator><creator>Taketomi, Akinobu</creator><creator>Kitamura, Hidemitsu</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7006-6767</orcidid></search><sort><creationdate>201710</creationdate><title>Lack of interleukin‐6 in the tumor microenvironment augments type‐1 immunity and increases the efficacy of cancer immunotherapy</title><author>Ohno, Yosuke ; Toyoshima, Yujiro ; Yurino, Hideaki ; Monma, Norikazu ; Xiang, Huihui ; Sumida, Kentaro ; Kaneumi, Shun ; Terada, Satoshi ; Hashimoto, Shinichi ; Ikeo, Kazuho ; Homma, Shigenori ; Kawamura, Hideki ; Takahashi, Norihiko ; Taketomi, Akinobu ; Kitamura, Hidemitsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5770-8ec3947f89e4e74b7087f07cd2bf4fa5c354fdfc868ee373003e1cc1b6aad4e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Antibodies, Monoclonal - administration & dosage</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Antibodies, Monoclonal, Humanized</topic><topic>Antigens</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>Cancer immunotherapy</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>Cell Line, Tumor</topic><topic>Cloning</topic><topic>Colon cancer</topic><topic>Colonic Neoplasms - genetics</topic><topic>Colonic Neoplasms - immunology</topic><topic>Colonic Neoplasms - therapy</topic><topic>Colorectal cancer</topic><topic>Cytokines</topic><topic>Cytotoxic T cells</topic><topic>Cytotoxicity</topic><topic>Dendritic cells</topic><topic>Dendritic Cells - immunology</topic><topic>Drug Synergism</topic><topic>Effector cells</topic><topic>Fibroblasts</topic><topic>Flow cytometry</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Immune status</topic><topic>Immunoglobulins</topic><topic>Immunology</topic><topic>Immunosuppression</topic><topic>Immunotherapy</topic><topic>Immunotherapy - methods</topic><topic>Interferon</topic><topic>Interferon-gamma - metabolism</topic><topic>interferon‐γ</topic><topic>Interleukin-6 - deficiency</topic><topic>Interleukin-6 - genetics</topic><topic>interleukin‐6</topic><topic>Kinases</topic><topic>Laboratory animals</topic><topic>Ligands</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Major histocompatibility complex</topic><topic>Mice</topic><topic>Microenvironments</topic><topic>Original</topic><topic>PD-L1 protein</topic><topic>programmed death‐ligand 1</topic><topic>Studies</topic><topic>T-Lymphocytes, Cytotoxic - immunology</topic><topic>T-Lymphocytes, Helper-Inducer - immunology</topic><topic>Toll-like receptors</topic><topic>Tumor Microenvironment - drug effects</topic><topic>Tumorigenesis</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohno, Yosuke</creatorcontrib><creatorcontrib>Toyoshima, Yujiro</creatorcontrib><creatorcontrib>Yurino, Hideaki</creatorcontrib><creatorcontrib>Monma, Norikazu</creatorcontrib><creatorcontrib>Xiang, Huihui</creatorcontrib><creatorcontrib>Sumida, Kentaro</creatorcontrib><creatorcontrib>Kaneumi, Shun</creatorcontrib><creatorcontrib>Terada, Satoshi</creatorcontrib><creatorcontrib>Hashimoto, Shinichi</creatorcontrib><creatorcontrib>Ikeo, Kazuho</creatorcontrib><creatorcontrib>Homma, Shigenori</creatorcontrib><creatorcontrib>Kawamura, Hideki</creatorcontrib><creatorcontrib>Takahashi, Norihiko</creatorcontrib><creatorcontrib>Taketomi, Akinobu</creatorcontrib><creatorcontrib>Kitamura, Hidemitsu</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohno, Yosuke</au><au>Toyoshima, Yujiro</au><au>Yurino, Hideaki</au><au>Monma, Norikazu</au><au>Xiang, Huihui</au><au>Sumida, Kentaro</au><au>Kaneumi, Shun</au><au>Terada, Satoshi</au><au>Hashimoto, Shinichi</au><au>Ikeo, Kazuho</au><au>Homma, Shigenori</au><au>Kawamura, Hideki</au><au>Takahashi, Norihiko</au><au>Taketomi, Akinobu</au><au>Kitamura, Hidemitsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lack of interleukin‐6 in the tumor microenvironment augments type‐1 immunity and increases the efficacy of cancer immunotherapy</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2017-10</date><risdate>2017</risdate><volume>108</volume><issue>10</issue><spage>1959</spage><epage>1966</epage><pages>1959-1966</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>Conquering immunosuppression in tumor microenvironments is crucial for effective cancer immunotherapy. It is well known that interleukin (IL)‐6, a pleiotropic cytokine, is produced in the tumor‐bearing state. In the present study, we investigated the precise effects of IL‐6 on antitumor immunity and the subsequent tumorigenesis in tumor‐bearing hosts. CT26 cells, a murine colon cancer cell line, were intradermally injected into wild‐type and IL‐6‐deficient mice. As a result, we found that tumor growth was decreased significantly in IL‐6‐deficient mice compared with wild‐type mice and the reduction was abrogated by depletion of CD8+ T cells. We further evaluated the immune status of tumor microenvironments and confirmed that mature dendritic cells, helper T cells and cytotoxic T cells were highly accumulated in tumor sites under the IL‐6‐deficient condition. In addition, higher numbers of interferon (IFN)‐γ‐producing T cells were present in the tumor tissues of IL‐6‐deficient mice compared with wild‐type mice. Surface expression levels of programmed death‐ligand 1 (PD‐L1) and MHC class I on CT26 cells were enhanced under the IL‐6‐deficient condition in vivo and by IFN‐γ stimulation in vitro. Finally, we confirmed that in vivo injection of an anti‐PD‐L1 antibody or a Toll‐like receptor 3 ligand, polyinosinic‐polycytidylic acid, effectively inhibited tumorigenesis under the IL‐6‐deficient condition. Based on these findings, we speculate that a lack of IL‐6 produced in tumor‐bearing host augments induction of antitumor effector T cells and inhibits tumorigenesis in vivo, suggesting that IL‐6 signaling may be a promising target for the development of effective cancer immunotherapies.
IL‐6 produced in the tumor hosts suppresses antitumor immunity involving the activation of effector T cells and dendritic cells. Lack of IL‐6 facilitates cancer immunotherapies using immune checkpoint inhibitors and immunological adjuvants.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>28746799</pmid><doi>10.1111/cas.13330</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7006-6767</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1347-9032 |
ispartof | Cancer science, 2017-10, Vol.108 (10), p.1959-1966 |
issn | 1347-9032 1349-7006 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5623732 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; PubMed Central |
subjects | Animals Antibodies, Monoclonal - administration & dosage Antibodies, Monoclonal - pharmacology Antibodies, Monoclonal, Humanized Antigens Antitumor activity Apoptosis Cancer immunotherapy CD8 antigen CD8-Positive T-Lymphocytes - immunology Cell Line, Tumor Cloning Colon cancer Colonic Neoplasms - genetics Colonic Neoplasms - immunology Colonic Neoplasms - therapy Colorectal cancer Cytokines Cytotoxic T cells Cytotoxicity Dendritic cells Dendritic Cells - immunology Drug Synergism Effector cells Fibroblasts Flow cytometry Gene expression Gene Expression Regulation, Neoplastic Immune status Immunoglobulins Immunology Immunosuppression Immunotherapy Immunotherapy - methods Interferon Interferon-gamma - metabolism interferon‐γ Interleukin-6 - deficiency Interleukin-6 - genetics interleukin‐6 Kinases Laboratory animals Ligands Lymphocytes Lymphocytes T Major histocompatibility complex Mice Microenvironments Original PD-L1 protein programmed death‐ligand 1 Studies T-Lymphocytes, Cytotoxic - immunology T-Lymphocytes, Helper-Inducer - immunology Toll-like receptors Tumor Microenvironment - drug effects Tumorigenesis Xenograft Model Antitumor Assays |
title | Lack of interleukin‐6 in the tumor microenvironment augments type‐1 immunity and increases the efficacy of cancer immunotherapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lack%20of%20interleukin%E2%80%906%20in%20the%20tumor%20microenvironment%20augments%20type%E2%80%901%20immunity%20and%20increases%20the%20efficacy%20of%20cancer%20immunotherapy&rft.jtitle=Cancer%20science&rft.au=Ohno,%20Yosuke&rft.date=2017-10&rft.volume=108&rft.issue=10&rft.spage=1959&rft.epage=1966&rft.pages=1959-1966&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/cas.13330&rft_dat=%3Cproquest_pubme%3E2289738522%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289738522&rft_id=info:pmid/28746799&rfr_iscdi=true |