The Equivalence Between Unit-Cell Twinning and Tiling in Icosahedral Quasicrystals
It is shown that tiling in icosahedral quasicrystals can also be properly described by cyclic twinning at the unit cell level. The twinning operation is applied on the primitive prolate golden rhombohedra, which can be considered a result of a distorted face-centered cubic parent structure. The shap...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-09, Vol.7 (1), p.12474-6, Article 12474 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 1 |
container_start_page | 12474 |
container_title | Scientific reports |
container_volume | 7 |
creator | Prodan, Albert Hren, Ram Dušić van Midden, Marion A. van Midden, Herman J. P. Zupanič, Erik |
description | It is shown that tiling in icosahedral quasicrystals can also be properly described by cyclic twinning at the unit cell level. The twinning operation is applied on the primitive prolate golden rhombohedra, which can be considered a result of a distorted face-centered cubic parent structure. The shape of the rhombohedra is determined by an exact space filling, resembling the forbidden five-fold rotational symmetry. Stacking of clusters, formed around multiply twinned rhombic hexecontahedra, keeps the rhombohedra of adjacent clusters in discrete relationships. Thus periodicities, interrelated as members of a Fibonacci series, are formed. The intergrown twins form no obvious twin boundaries and fill the space in combination with the oblate golden rhombohedra, formed between clusters in contact. Simulated diffraction patterns of the multiply twinned rhombohedra and the Fourier transform of an extended model structure are in full accord with the experimental diffraction patterns and can be indexed by means of three-dimensional crystallography. The alternative approach is fully compatible to the rather complicated descriptions in a hyper-space. |
doi_str_mv | 10.1038/s41598-017-12669-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5622099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957776683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-22dba6a16600c513f65c9b17890a449b19b24735f098b1f2c491e3f96d2fc4533</originalsourceid><addsrcrecordid>eNp1UU1LAzEUDKJoqf0DHmTBi5fVfO_mImjxCwqi1HPIZrNtZJvVZLeL_97U1lIFc3kDb95khgHgBMELBEl-GShiIk8hylKEORdpvwcGGFKWYoLx_g4-AqMQ3mB8DAuKxCE4wrnghFE0AC_TuUluPzq7VLVx2iQ3pu2Nccmrs206NnWdTHvrnHWzRLkymdp6Ba1LHnUT1NyUXtXJc6eC1f4ztKoOx-CgisOMNnMIXu9up-OHdPJ0_zi-nqSaZrRNMS4LxRXiHELNEKk406JAWS6gojQiUWCaEVZBkReowpoKZEgleIkrTRkhQ3C11n3vioUptXFt9CLfvV0o_ykbZeXvjbNzOWuWknGMoRBR4Hwj4JuPzoRWLmzQMbJypumCRIIyjBgnK-rZH-pb03kX40UWy7KM83zlCK9Z2jcheFNtzSAoV63JdWsytia_W5N9PDrdjbE9-ekoEsiaEOLKzYzf-ft_2S9ASKLS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957776683</pqid></control><display><type>article</type><title>The Equivalence Between Unit-Cell Twinning and Tiling in Icosahedral Quasicrystals</title><source>PubMed (Medline)</source><source>SpringerOpen</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Prodan, Albert ; Hren, Ram Dušić ; van Midden, Marion A. ; van Midden, Herman J. P. ; Zupanič, Erik</creator><creatorcontrib>Prodan, Albert ; Hren, Ram Dušić ; van Midden, Marion A. ; van Midden, Herman J. P. ; Zupanič, Erik</creatorcontrib><description>It is shown that tiling in icosahedral quasicrystals can also be properly described by cyclic twinning at the unit cell level. The twinning operation is applied on the primitive prolate golden rhombohedra, which can be considered a result of a distorted face-centered cubic parent structure. The shape of the rhombohedra is determined by an exact space filling, resembling the forbidden five-fold rotational symmetry. Stacking of clusters, formed around multiply twinned rhombic hexecontahedra, keeps the rhombohedra of adjacent clusters in discrete relationships. Thus periodicities, interrelated as members of a Fibonacci series, are formed. The intergrown twins form no obvious twin boundaries and fill the space in combination with the oblate golden rhombohedra, formed between clusters in contact. Simulated diffraction patterns of the multiply twinned rhombohedra and the Fourier transform of an extended model structure are in full accord with the experimental diffraction patterns and can be indexed by means of three-dimensional crystallography. The alternative approach is fully compatible to the rather complicated descriptions in a hyper-space.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-12669-w</identifier><identifier>PMID: 28963541</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/1002 ; 639/766/119/1002 ; Crystallography ; Diffraction ; Fourier transforms ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary) ; X-rays</subject><ispartof>Scientific reports, 2017-09, Vol.7 (1), p.12474-6, Article 12474</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-22dba6a16600c513f65c9b17890a449b19b24735f098b1f2c491e3f96d2fc4533</citedby><cites>FETCH-LOGICAL-c474t-22dba6a16600c513f65c9b17890a449b19b24735f098b1f2c491e3f96d2fc4533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622099/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622099/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27915,27916,41111,42180,51567,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28963541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prodan, Albert</creatorcontrib><creatorcontrib>Hren, Ram Dušić</creatorcontrib><creatorcontrib>van Midden, Marion A.</creatorcontrib><creatorcontrib>van Midden, Herman J. P.</creatorcontrib><creatorcontrib>Zupanič, Erik</creatorcontrib><title>The Equivalence Between Unit-Cell Twinning and Tiling in Icosahedral Quasicrystals</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>It is shown that tiling in icosahedral quasicrystals can also be properly described by cyclic twinning at the unit cell level. The twinning operation is applied on the primitive prolate golden rhombohedra, which can be considered a result of a distorted face-centered cubic parent structure. The shape of the rhombohedra is determined by an exact space filling, resembling the forbidden five-fold rotational symmetry. Stacking of clusters, formed around multiply twinned rhombic hexecontahedra, keeps the rhombohedra of adjacent clusters in discrete relationships. Thus periodicities, interrelated as members of a Fibonacci series, are formed. The intergrown twins form no obvious twin boundaries and fill the space in combination with the oblate golden rhombohedra, formed between clusters in contact. Simulated diffraction patterns of the multiply twinned rhombohedra and the Fourier transform of an extended model structure are in full accord with the experimental diffraction patterns and can be indexed by means of three-dimensional crystallography. The alternative approach is fully compatible to the rather complicated descriptions in a hyper-space.</description><subject>639/301/119/1002</subject><subject>639/766/119/1002</subject><subject>Crystallography</subject><subject>Diffraction</subject><subject>Fourier transforms</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>X-rays</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UU1LAzEUDKJoqf0DHmTBi5fVfO_mImjxCwqi1HPIZrNtZJvVZLeL_97U1lIFc3kDb95khgHgBMELBEl-GShiIk8hylKEORdpvwcGGFKWYoLx_g4-AqMQ3mB8DAuKxCE4wrnghFE0AC_TuUluPzq7VLVx2iQ3pu2Nccmrs206NnWdTHvrnHWzRLkymdp6Ba1LHnUT1NyUXtXJc6eC1f4ztKoOx-CgisOMNnMIXu9up-OHdPJ0_zi-nqSaZrRNMS4LxRXiHELNEKk406JAWS6gojQiUWCaEVZBkReowpoKZEgleIkrTRkhQ3C11n3vioUptXFt9CLfvV0o_ykbZeXvjbNzOWuWknGMoRBR4Hwj4JuPzoRWLmzQMbJypumCRIIyjBgnK-rZH-pb03kX40UWy7KM83zlCK9Z2jcheFNtzSAoV63JdWsytia_W5N9PDrdjbE9-ekoEsiaEOLKzYzf-ft_2S9ASKLS</recordid><startdate>20170929</startdate><enddate>20170929</enddate><creator>Prodan, Albert</creator><creator>Hren, Ram Dušić</creator><creator>van Midden, Marion A.</creator><creator>van Midden, Herman J. P.</creator><creator>Zupanič, Erik</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170929</creationdate><title>The Equivalence Between Unit-Cell Twinning and Tiling in Icosahedral Quasicrystals</title><author>Prodan, Albert ; Hren, Ram Dušić ; van Midden, Marion A. ; van Midden, Herman J. P. ; Zupanič, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-22dba6a16600c513f65c9b17890a449b19b24735f098b1f2c491e3f96d2fc4533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/301/119/1002</topic><topic>639/766/119/1002</topic><topic>Crystallography</topic><topic>Diffraction</topic><topic>Fourier transforms</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prodan, Albert</creatorcontrib><creatorcontrib>Hren, Ram Dušić</creatorcontrib><creatorcontrib>van Midden, Marion A.</creatorcontrib><creatorcontrib>van Midden, Herman J. P.</creatorcontrib><creatorcontrib>Zupanič, Erik</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prodan, Albert</au><au>Hren, Ram Dušić</au><au>van Midden, Marion A.</au><au>van Midden, Herman J. P.</au><au>Zupanič, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Equivalence Between Unit-Cell Twinning and Tiling in Icosahedral Quasicrystals</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-09-29</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>12474</spage><epage>6</epage><pages>12474-6</pages><artnum>12474</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>It is shown that tiling in icosahedral quasicrystals can also be properly described by cyclic twinning at the unit cell level. The twinning operation is applied on the primitive prolate golden rhombohedra, which can be considered a result of a distorted face-centered cubic parent structure. The shape of the rhombohedra is determined by an exact space filling, resembling the forbidden five-fold rotational symmetry. Stacking of clusters, formed around multiply twinned rhombic hexecontahedra, keeps the rhombohedra of adjacent clusters in discrete relationships. Thus periodicities, interrelated as members of a Fibonacci series, are formed. The intergrown twins form no obvious twin boundaries and fill the space in combination with the oblate golden rhombohedra, formed between clusters in contact. Simulated diffraction patterns of the multiply twinned rhombohedra and the Fourier transform of an extended model structure are in full accord with the experimental diffraction patterns and can be indexed by means of three-dimensional crystallography. The alternative approach is fully compatible to the rather complicated descriptions in a hyper-space.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28963541</pmid><doi>10.1038/s41598-017-12669-w</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-09, Vol.7 (1), p.12474-6, Article 12474 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5622099 |
source | PubMed (Medline); SpringerOpen; Nature Free; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | 639/301/119/1002 639/766/119/1002 Crystallography Diffraction Fourier transforms Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) X-rays |
title | The Equivalence Between Unit-Cell Twinning and Tiling in Icosahedral Quasicrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Equivalence%20Between%20Unit-Cell%20Twinning%20and%20Tiling%20in%20Icosahedral%20Quasicrystals&rft.jtitle=Scientific%20reports&rft.au=Prodan,%20Albert&rft.date=2017-09-29&rft.volume=7&rft.issue=1&rft.spage=12474&rft.epage=6&rft.pages=12474-6&rft.artnum=12474&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-12669-w&rft_dat=%3Cproquest_pubme%3E1957776683%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1957776683&rft_id=info:pmid/28963541&rfr_iscdi=true |