3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures

Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned orga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2017-09, Vol.18 (9), p.1927
Hauptverfasser: Park, Chan Ho, Kim, Kyoung-Hwa, Lee, Yong-Moo, Giannobile, William V, Seol, Yang-Jo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1927
container_title International journal of molecular sciences
container_volume 18
creator Park, Chan Ho
Kim, Kyoung-Hwa
Lee, Yong-Moo
Giannobile, William V
Seol, Yang-Jo
description Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned organizations, it remains a challenge to develop ligament-guided, 3D architectures with the angular controllability for parallel, oblique or perpendicular orientations of cells required for biomechanical support of organs. Here, we show the use of scaffold design by additive manufacturing for specific topographies or angulated microgroove patterns to control cell orientations such as parallel (0°), oblique (45°) and perpendicular (90°) angulations. These results demonstrate that ligament cells displayed highly predictable and controllable orientations along microgroove patterns on 3D biopolymeric scaffolds. Our findings demonstrate that 3D printed topographical approaches can regulate spatiotemporal cell organizations that offer strong potential for adaptation to complex tissue defects to regenerate ligament-bone complexes.
doi_str_mv 10.3390/ijms18091927
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5618576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1937523012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-c709e4ef92f8bb50941dd034df9830a1c4e1adda9a2494d85dc30b772aab094f3</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxYMoWqs3z7LgxUNX89ndXATxGyp6UDyGbDLbpnQ3muwW_O9NUUv1NAPzm8e8eQgdEXzGmMTnbt5EUmJJJC220IBwSnOMx8X2Rr-H9mOcY0wZFXIX7dGyLIXgbIDe2HX2HFzbgR1lj84EPw3eLyF71l0Hoc2vg1tCm91BC0F3zreZr7On4GC1kk3cVDep9X3MLoOZuQ5M1weIB2in1osIhz91iF5vb16u7vPJ093D1eUkN5zQLjcFlsChlrQuq0pgyYm1mHFby5JhTQwHoq3VUlMuuS2FNQxXRUG1rhJcsyG6-NZ976sGrEm3BL1Q78E1Onwqr536O2ndTE39UokxKUUxTgKnPwLBf_QQO9W4aGCx0C0kV4pIVgjKMKEJPfmHzn0f2mQvUYJSIjERiRp9U-mXMQao18cQrFaJqc3EEn68aWAN_0bEvgBcXpMf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952219015</pqid></control><display><type>article</type><title>3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Park, Chan Ho ; Kim, Kyoung-Hwa ; Lee, Yong-Moo ; Giannobile, William V ; Seol, Yang-Jo</creator><creatorcontrib>Park, Chan Ho ; Kim, Kyoung-Hwa ; Lee, Yong-Moo ; Giannobile, William V ; Seol, Yang-Jo</creatorcontrib><description>Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned organizations, it remains a challenge to develop ligament-guided, 3D architectures with the angular controllability for parallel, oblique or perpendicular orientations of cells required for biomechanical support of organs. Here, we show the use of scaffold design by additive manufacturing for specific topographies or angulated microgroove patterns to control cell orientations such as parallel (0°), oblique (45°) and perpendicular (90°) angulations. These results demonstrate that ligament cells displayed highly predictable and controllable orientations along microgroove patterns on 3D biopolymeric scaffolds. Our findings demonstrate that 3D printed topographical approaches can regulate spatiotemporal cell organizations that offer strong potential for adaptation to complex tissue defects to regenerate ligament-bone complexes.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms18091927</identifier><identifier>PMID: 28885543</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adaptation ; Biocompatible Materials ; Biomechanics ; Biopolymers ; Controllability ; Fluorescent Antibody Technique ; Ligaments ; Materials Testing ; Microscopy, Electron, Scanning ; Organizations ; Organs ; Printing ; Printing, Three-Dimensional ; Scaffolds ; Stability ; Tissue Engineering ; Tissue Scaffolds ; X-Ray Microtomography</subject><ispartof>International journal of molecular sciences, 2017-09, Vol.18 (9), p.1927</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-c709e4ef92f8bb50941dd034df9830a1c4e1adda9a2494d85dc30b772aab094f3</citedby><cites>FETCH-LOGICAL-c412t-c709e4ef92f8bb50941dd034df9830a1c4e1adda9a2494d85dc30b772aab094f3</cites><orcidid>0000-0002-1503-3476 ; 0000-0001-5611-1242 ; 0000-0002-2076-5452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618576/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618576/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28885543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Chan Ho</creatorcontrib><creatorcontrib>Kim, Kyoung-Hwa</creatorcontrib><creatorcontrib>Lee, Yong-Moo</creatorcontrib><creatorcontrib>Giannobile, William V</creatorcontrib><creatorcontrib>Seol, Yang-Jo</creatorcontrib><title>3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned organizations, it remains a challenge to develop ligament-guided, 3D architectures with the angular controllability for parallel, oblique or perpendicular orientations of cells required for biomechanical support of organs. Here, we show the use of scaffold design by additive manufacturing for specific topographies or angulated microgroove patterns to control cell orientations such as parallel (0°), oblique (45°) and perpendicular (90°) angulations. These results demonstrate that ligament cells displayed highly predictable and controllable orientations along microgroove patterns on 3D biopolymeric scaffolds. Our findings demonstrate that 3D printed topographical approaches can regulate spatiotemporal cell organizations that offer strong potential for adaptation to complex tissue defects to regenerate ligament-bone complexes.</description><subject>Adaptation</subject><subject>Biocompatible Materials</subject><subject>Biomechanics</subject><subject>Biopolymers</subject><subject>Controllability</subject><subject>Fluorescent Antibody Technique</subject><subject>Ligaments</subject><subject>Materials Testing</subject><subject>Microscopy, Electron, Scanning</subject><subject>Organizations</subject><subject>Organs</subject><subject>Printing</subject><subject>Printing, Three-Dimensional</subject><subject>Scaffolds</subject><subject>Stability</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><subject>X-Ray Microtomography</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1LAzEQxYMoWqs3z7LgxUNX89ndXATxGyp6UDyGbDLbpnQ3muwW_O9NUUv1NAPzm8e8eQgdEXzGmMTnbt5EUmJJJC220IBwSnOMx8X2Rr-H9mOcY0wZFXIX7dGyLIXgbIDe2HX2HFzbgR1lj84EPw3eLyF71l0Hoc2vg1tCm91BC0F3zreZr7On4GC1kk3cVDep9X3MLoOZuQ5M1weIB2in1osIhz91iF5vb16u7vPJ093D1eUkN5zQLjcFlsChlrQuq0pgyYm1mHFby5JhTQwHoq3VUlMuuS2FNQxXRUG1rhJcsyG6-NZ976sGrEm3BL1Q78E1Onwqr536O2ndTE39UokxKUUxTgKnPwLBf_QQO9W4aGCx0C0kV4pIVgjKMKEJPfmHzn0f2mQvUYJSIjERiRp9U-mXMQao18cQrFaJqc3EEn68aWAN_0bEvgBcXpMf</recordid><startdate>20170908</startdate><enddate>20170908</enddate><creator>Park, Chan Ho</creator><creator>Kim, Kyoung-Hwa</creator><creator>Lee, Yong-Moo</creator><creator>Giannobile, William V</creator><creator>Seol, Yang-Jo</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1503-3476</orcidid><orcidid>https://orcid.org/0000-0001-5611-1242</orcidid><orcidid>https://orcid.org/0000-0002-2076-5452</orcidid></search><sort><creationdate>20170908</creationdate><title>3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures</title><author>Park, Chan Ho ; Kim, Kyoung-Hwa ; Lee, Yong-Moo ; Giannobile, William V ; Seol, Yang-Jo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-c709e4ef92f8bb50941dd034df9830a1c4e1adda9a2494d85dc30b772aab094f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation</topic><topic>Biocompatible Materials</topic><topic>Biomechanics</topic><topic>Biopolymers</topic><topic>Controllability</topic><topic>Fluorescent Antibody Technique</topic><topic>Ligaments</topic><topic>Materials Testing</topic><topic>Microscopy, Electron, Scanning</topic><topic>Organizations</topic><topic>Organs</topic><topic>Printing</topic><topic>Printing, Three-Dimensional</topic><topic>Scaffolds</topic><topic>Stability</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Chan Ho</creatorcontrib><creatorcontrib>Kim, Kyoung-Hwa</creatorcontrib><creatorcontrib>Lee, Yong-Moo</creatorcontrib><creatorcontrib>Giannobile, William V</creatorcontrib><creatorcontrib>Seol, Yang-Jo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Chan Ho</au><au>Kim, Kyoung-Hwa</au><au>Lee, Yong-Moo</au><au>Giannobile, William V</au><au>Seol, Yang-Jo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2017-09-08</date><risdate>2017</risdate><volume>18</volume><issue>9</issue><spage>1927</spage><pages>1927-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned organizations, it remains a challenge to develop ligament-guided, 3D architectures with the angular controllability for parallel, oblique or perpendicular orientations of cells required for biomechanical support of organs. Here, we show the use of scaffold design by additive manufacturing for specific topographies or angulated microgroove patterns to control cell orientations such as parallel (0°), oblique (45°) and perpendicular (90°) angulations. These results demonstrate that ligament cells displayed highly predictable and controllable orientations along microgroove patterns on 3D biopolymeric scaffolds. Our findings demonstrate that 3D printed topographical approaches can regulate spatiotemporal cell organizations that offer strong potential for adaptation to complex tissue defects to regenerate ligament-bone complexes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>28885543</pmid><doi>10.3390/ijms18091927</doi><orcidid>https://orcid.org/0000-0002-1503-3476</orcidid><orcidid>https://orcid.org/0000-0001-5611-1242</orcidid><orcidid>https://orcid.org/0000-0002-2076-5452</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2017-09, Vol.18 (9), p.1927
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5618576
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adaptation
Biocompatible Materials
Biomechanics
Biopolymers
Controllability
Fluorescent Antibody Technique
Ligaments
Materials Testing
Microscopy, Electron, Scanning
Organizations
Organs
Printing
Printing, Three-Dimensional
Scaffolds
Stability
Tissue Engineering
Tissue Scaffolds
X-Ray Microtomography
title 3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printed,%20Microgroove%20Pattern-Driven%20Generation%20of%20Oriented%20Ligamentous%20Architectures&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Park,%20Chan%20Ho&rft.date=2017-09-08&rft.volume=18&rft.issue=9&rft.spage=1927&rft.pages=1927-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms18091927&rft_dat=%3Cproquest_pubme%3E1937523012%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952219015&rft_id=info:pmid/28885543&rfr_iscdi=true