3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures
Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned orga...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2017-09, Vol.18 (9), p.1927 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1927 |
container_title | International journal of molecular sciences |
container_volume | 18 |
creator | Park, Chan Ho Kim, Kyoung-Hwa Lee, Yong-Moo Giannobile, William V Seol, Yang-Jo |
description | Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned organizations, it remains a challenge to develop ligament-guided, 3D architectures with the angular controllability for parallel, oblique or perpendicular orientations of cells required for biomechanical support of organs. Here, we show the use of scaffold design by additive manufacturing for specific topographies or angulated microgroove patterns to control cell orientations such as parallel (0°), oblique (45°) and perpendicular (90°) angulations. These results demonstrate that ligament cells displayed highly predictable and controllable orientations along microgroove patterns on 3D biopolymeric scaffolds. Our findings demonstrate that 3D printed topographical approaches can regulate spatiotemporal cell organizations that offer strong potential for adaptation to complex tissue defects to regenerate ligament-bone complexes. |
doi_str_mv | 10.3390/ijms18091927 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5618576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1937523012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-c709e4ef92f8bb50941dd034df9830a1c4e1adda9a2494d85dc30b772aab094f3</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxYMoWqs3z7LgxUNX89ndXATxGyp6UDyGbDLbpnQ3muwW_O9NUUv1NAPzm8e8eQgdEXzGmMTnbt5EUmJJJC220IBwSnOMx8X2Rr-H9mOcY0wZFXIX7dGyLIXgbIDe2HX2HFzbgR1lj84EPw3eLyF71l0Hoc2vg1tCm91BC0F3zreZr7On4GC1kk3cVDep9X3MLoOZuQ5M1weIB2in1osIhz91iF5vb16u7vPJ093D1eUkN5zQLjcFlsChlrQuq0pgyYm1mHFby5JhTQwHoq3VUlMuuS2FNQxXRUG1rhJcsyG6-NZ976sGrEm3BL1Q78E1Onwqr536O2ndTE39UokxKUUxTgKnPwLBf_QQO9W4aGCx0C0kV4pIVgjKMKEJPfmHzn0f2mQvUYJSIjERiRp9U-mXMQao18cQrFaJqc3EEn68aWAN_0bEvgBcXpMf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952219015</pqid></control><display><type>article</type><title>3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Park, Chan Ho ; Kim, Kyoung-Hwa ; Lee, Yong-Moo ; Giannobile, William V ; Seol, Yang-Jo</creator><creatorcontrib>Park, Chan Ho ; Kim, Kyoung-Hwa ; Lee, Yong-Moo ; Giannobile, William V ; Seol, Yang-Jo</creatorcontrib><description>Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned organizations, it remains a challenge to develop ligament-guided, 3D architectures with the angular controllability for parallel, oblique or perpendicular orientations of cells required for biomechanical support of organs. Here, we show the use of scaffold design by additive manufacturing for specific topographies or angulated microgroove patterns to control cell orientations such as parallel (0°), oblique (45°) and perpendicular (90°) angulations. These results demonstrate that ligament cells displayed highly predictable and controllable orientations along microgroove patterns on 3D biopolymeric scaffolds. Our findings demonstrate that 3D printed topographical approaches can regulate spatiotemporal cell organizations that offer strong potential for adaptation to complex tissue defects to regenerate ligament-bone complexes.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms18091927</identifier><identifier>PMID: 28885543</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adaptation ; Biocompatible Materials ; Biomechanics ; Biopolymers ; Controllability ; Fluorescent Antibody Technique ; Ligaments ; Materials Testing ; Microscopy, Electron, Scanning ; Organizations ; Organs ; Printing ; Printing, Three-Dimensional ; Scaffolds ; Stability ; Tissue Engineering ; Tissue Scaffolds ; X-Ray Microtomography</subject><ispartof>International journal of molecular sciences, 2017-09, Vol.18 (9), p.1927</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-c709e4ef92f8bb50941dd034df9830a1c4e1adda9a2494d85dc30b772aab094f3</citedby><cites>FETCH-LOGICAL-c412t-c709e4ef92f8bb50941dd034df9830a1c4e1adda9a2494d85dc30b772aab094f3</cites><orcidid>0000-0002-1503-3476 ; 0000-0001-5611-1242 ; 0000-0002-2076-5452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618576/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618576/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28885543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Chan Ho</creatorcontrib><creatorcontrib>Kim, Kyoung-Hwa</creatorcontrib><creatorcontrib>Lee, Yong-Moo</creatorcontrib><creatorcontrib>Giannobile, William V</creatorcontrib><creatorcontrib>Seol, Yang-Jo</creatorcontrib><title>3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned organizations, it remains a challenge to develop ligament-guided, 3D architectures with the angular controllability for parallel, oblique or perpendicular orientations of cells required for biomechanical support of organs. Here, we show the use of scaffold design by additive manufacturing for specific topographies or angulated microgroove patterns to control cell orientations such as parallel (0°), oblique (45°) and perpendicular (90°) angulations. These results demonstrate that ligament cells displayed highly predictable and controllable orientations along microgroove patterns on 3D biopolymeric scaffolds. Our findings demonstrate that 3D printed topographical approaches can regulate spatiotemporal cell organizations that offer strong potential for adaptation to complex tissue defects to regenerate ligament-bone complexes.</description><subject>Adaptation</subject><subject>Biocompatible Materials</subject><subject>Biomechanics</subject><subject>Biopolymers</subject><subject>Controllability</subject><subject>Fluorescent Antibody Technique</subject><subject>Ligaments</subject><subject>Materials Testing</subject><subject>Microscopy, Electron, Scanning</subject><subject>Organizations</subject><subject>Organs</subject><subject>Printing</subject><subject>Printing, Three-Dimensional</subject><subject>Scaffolds</subject><subject>Stability</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><subject>X-Ray Microtomography</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1LAzEQxYMoWqs3z7LgxUNX89ndXATxGyp6UDyGbDLbpnQ3muwW_O9NUUv1NAPzm8e8eQgdEXzGmMTnbt5EUmJJJC220IBwSnOMx8X2Rr-H9mOcY0wZFXIX7dGyLIXgbIDe2HX2HFzbgR1lj84EPw3eLyF71l0Hoc2vg1tCm91BC0F3zreZr7On4GC1kk3cVDep9X3MLoOZuQ5M1weIB2in1osIhz91iF5vb16u7vPJ093D1eUkN5zQLjcFlsChlrQuq0pgyYm1mHFby5JhTQwHoq3VUlMuuS2FNQxXRUG1rhJcsyG6-NZ976sGrEm3BL1Q78E1Onwqr536O2ndTE39UokxKUUxTgKnPwLBf_QQO9W4aGCx0C0kV4pIVgjKMKEJPfmHzn0f2mQvUYJSIjERiRp9U-mXMQao18cQrFaJqc3EEn68aWAN_0bEvgBcXpMf</recordid><startdate>20170908</startdate><enddate>20170908</enddate><creator>Park, Chan Ho</creator><creator>Kim, Kyoung-Hwa</creator><creator>Lee, Yong-Moo</creator><creator>Giannobile, William V</creator><creator>Seol, Yang-Jo</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1503-3476</orcidid><orcidid>https://orcid.org/0000-0001-5611-1242</orcidid><orcidid>https://orcid.org/0000-0002-2076-5452</orcidid></search><sort><creationdate>20170908</creationdate><title>3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures</title><author>Park, Chan Ho ; Kim, Kyoung-Hwa ; Lee, Yong-Moo ; Giannobile, William V ; Seol, Yang-Jo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-c709e4ef92f8bb50941dd034df9830a1c4e1adda9a2494d85dc30b772aab094f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation</topic><topic>Biocompatible Materials</topic><topic>Biomechanics</topic><topic>Biopolymers</topic><topic>Controllability</topic><topic>Fluorescent Antibody Technique</topic><topic>Ligaments</topic><topic>Materials Testing</topic><topic>Microscopy, Electron, Scanning</topic><topic>Organizations</topic><topic>Organs</topic><topic>Printing</topic><topic>Printing, Three-Dimensional</topic><topic>Scaffolds</topic><topic>Stability</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Chan Ho</creatorcontrib><creatorcontrib>Kim, Kyoung-Hwa</creatorcontrib><creatorcontrib>Lee, Yong-Moo</creatorcontrib><creatorcontrib>Giannobile, William V</creatorcontrib><creatorcontrib>Seol, Yang-Jo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Chan Ho</au><au>Kim, Kyoung-Hwa</au><au>Lee, Yong-Moo</au><au>Giannobile, William V</au><au>Seol, Yang-Jo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2017-09-08</date><risdate>2017</risdate><volume>18</volume><issue>9</issue><spage>1927</spage><pages>1927-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned organizations, it remains a challenge to develop ligament-guided, 3D architectures with the angular controllability for parallel, oblique or perpendicular orientations of cells required for biomechanical support of organs. Here, we show the use of scaffold design by additive manufacturing for specific topographies or angulated microgroove patterns to control cell orientations such as parallel (0°), oblique (45°) and perpendicular (90°) angulations. These results demonstrate that ligament cells displayed highly predictable and controllable orientations along microgroove patterns on 3D biopolymeric scaffolds. Our findings demonstrate that 3D printed topographical approaches can regulate spatiotemporal cell organizations that offer strong potential for adaptation to complex tissue defects to regenerate ligament-bone complexes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>28885543</pmid><doi>10.3390/ijms18091927</doi><orcidid>https://orcid.org/0000-0002-1503-3476</orcidid><orcidid>https://orcid.org/0000-0001-5611-1242</orcidid><orcidid>https://orcid.org/0000-0002-2076-5452</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2017-09, Vol.18 (9), p.1927 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5618576 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adaptation Biocompatible Materials Biomechanics Biopolymers Controllability Fluorescent Antibody Technique Ligaments Materials Testing Microscopy, Electron, Scanning Organizations Organs Printing Printing, Three-Dimensional Scaffolds Stability Tissue Engineering Tissue Scaffolds X-Ray Microtomography |
title | 3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printed,%20Microgroove%20Pattern-Driven%20Generation%20of%20Oriented%20Ligamentous%20Architectures&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Park,%20Chan%20Ho&rft.date=2017-09-08&rft.volume=18&rft.issue=9&rft.spage=1927&rft.pages=1927-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms18091927&rft_dat=%3Cproquest_pubme%3E1937523012%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952219015&rft_id=info:pmid/28885543&rfr_iscdi=true |