IGF-1 Attenuates Hypoxia-Induced Atrophy but Inhibits Myoglobin Expression in C2C12 Skeletal Muscle Myotubes
Chronic hypoxia is associated with muscle wasting and decreased oxidative capacity. By contrast, training under hypoxia may enhance hypertrophy and increase oxidative capacity as well as oxygen transport to the mitochondria, by increasing myoglobin (Mb) expression. The latter may be a feasible strat...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2017-09, Vol.18 (9), p.1889 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1889 |
container_title | International journal of molecular sciences |
container_volume | 18 |
creator | Peters, Eva L van der Linde, Sandra M Vogel, Ilse S P Haroon, Mohammad Offringa, Carla de Wit, Gerard M J Koolwijk, Pieter van der Laarse, Willem J Jaspers, Richard T |
description | Chronic hypoxia is associated with muscle wasting and decreased oxidative capacity. By contrast, training under hypoxia may enhance hypertrophy and increase oxidative capacity as well as oxygen transport to the mitochondria, by increasing myoglobin (Mb) expression. The latter may be a feasible strategy to prevent atrophy under hypoxia and enhance an eventual hypertrophic response to anabolic stimulation. Mb expression may be further enhanced by lipid supplementation. We investigated individual and combined effects of hypoxia, insulin-like growth factor (IGF)-1 and lipids, in mouse skeletal muscle C2C12 myotubes. Differentiated C2C12 myotubes were cultured for 24 h under 20%, 5% and 2% oxygen with or without IGF-1 and/or lipid treatment. In culture under 20% oxygen, IGF-1 induced 51% hypertrophy. Hypertrophy was only 32% under 5% and abrogated under 2% oxygen. This was not explained by changes in expression of genes involved in contractile protein synthesis or degradation, suggesting a reduced rate of translation rather than of transcription. Myoglobin mRNA expression increased by 75% under 5% O₂ but decreased by 50% upon IGF-1 treatment under 20% O₂, compared to control. Inhibition of mammalian target of rapamycin (mTOR) activation using rapamycin restored Mb mRNA expression to control levels. Lipid supplementation had no effect on Mb gene expression. Thus, IGF-1-induced anabolic signaling can be a strategy to improve muscle size under mild hypoxia, but lowers Mb gene expression. |
doi_str_mv | 10.3390/ijms18091889 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5618538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1952219195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-81a85ef551f669362e2031360dc9c4acc9c8e23f48dd581d3049202ce0dddce13</originalsourceid><addsrcrecordid>eNpdkUlvFDEQhVsIRBa4cUaWuHBIEy_dHvcFKRplGSlRDsDZctvVGQ8eu_GCMv8-jrJo4FLrp6cqvab5RPA3xgZ8ajfbRAQeiBDDm-aQdJS2GPPF2736oDlKaYMxZbQf3jcHVAhO-YIdNm51edESdJYz-KIyJHS1m8O9Ve3Km6LB1FUM83qHxpLRyq_taHNCN7tw58JoPTq_nyOkZINHtVvSJaHox29wkJVDNyVpB490LiOkD827SbkEH5_zcfPr4vzn8qq9vr1cLc-uW90tRG4FUaKHqe_JxPnAOAWKGWEcGz3oTukaBVA2dcKYXhDDcDdQTDVgY4wGwo6b70-6cxm3UEc-R-XkHO1WxZ0Mysp_N96u5V34K3tORM9EFfj6LBDDnwIpy61NGpxTHkJJktSrCKd0QSv65T90E0r09b1K9ZSSoaZKnTxROoaUIkyvxxAsH22U-zZW_PP-A6_wi2_sARazmSs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952219195</pqid></control><display><type>article</type><title>IGF-1 Attenuates Hypoxia-Induced Atrophy but Inhibits Myoglobin Expression in C2C12 Skeletal Muscle Myotubes</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Peters, Eva L ; van der Linde, Sandra M ; Vogel, Ilse S P ; Haroon, Mohammad ; Offringa, Carla ; de Wit, Gerard M J ; Koolwijk, Pieter ; van der Laarse, Willem J ; Jaspers, Richard T</creator><creatorcontrib>Peters, Eva L ; van der Linde, Sandra M ; Vogel, Ilse S P ; Haroon, Mohammad ; Offringa, Carla ; de Wit, Gerard M J ; Koolwijk, Pieter ; van der Laarse, Willem J ; Jaspers, Richard T</creatorcontrib><description>Chronic hypoxia is associated with muscle wasting and decreased oxidative capacity. By contrast, training under hypoxia may enhance hypertrophy and increase oxidative capacity as well as oxygen transport to the mitochondria, by increasing myoglobin (Mb) expression. The latter may be a feasible strategy to prevent atrophy under hypoxia and enhance an eventual hypertrophic response to anabolic stimulation. Mb expression may be further enhanced by lipid supplementation. We investigated individual and combined effects of hypoxia, insulin-like growth factor (IGF)-1 and lipids, in mouse skeletal muscle C2C12 myotubes. Differentiated C2C12 myotubes were cultured for 24 h under 20%, 5% and 2% oxygen with or without IGF-1 and/or lipid treatment. In culture under 20% oxygen, IGF-1 induced 51% hypertrophy. Hypertrophy was only 32% under 5% and abrogated under 2% oxygen. This was not explained by changes in expression of genes involved in contractile protein synthesis or degradation, suggesting a reduced rate of translation rather than of transcription. Myoglobin mRNA expression increased by 75% under 5% O₂ but decreased by 50% upon IGF-1 treatment under 20% O₂, compared to control. Inhibition of mammalian target of rapamycin (mTOR) activation using rapamycin restored Mb mRNA expression to control levels. Lipid supplementation had no effect on Mb gene expression. Thus, IGF-1-induced anabolic signaling can be a strategy to improve muscle size under mild hypoxia, but lowers Mb gene expression.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms18091889</identifier><identifier>PMID: 28862673</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; Atrophy ; Gene expression ; Gene Expression Regulation - genetics ; Humans ; Hypertrophy ; Hypoxia ; Hypoxia - genetics ; Hypoxia - pathology ; Insulin ; Insulin-like growth factor I ; Insulin-Like Growth Factor I - genetics ; Insulin-like growth factors ; Lipids ; Mice ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Muscle contraction ; Muscle Contraction - drug effects ; Muscle Fibers, Skeletal - metabolism ; Muscle Fibers, Skeletal - pathology ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Muscular Atrophy - genetics ; Muscular Atrophy - pathology ; Musculoskeletal system ; Myogenic Regulatory Factors ; Myoglobin - genetics ; Myoglobin - metabolism ; Myoglobins ; Myotubes ; Oxygen - metabolism ; Protein biosynthesis ; Protein synthesis ; Rapamycin ; Rodents ; Signal Transduction - drug effects ; Skeletal muscle ; Succinate Dehydrogenase - genetics ; Testosterone Congeners - metabolism ; TOR protein ; TOR Serine-Threonine Kinases - genetics ; Transcription</subject><ispartof>International journal of molecular sciences, 2017-09, Vol.18 (9), p.1889</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-81a85ef551f669362e2031360dc9c4acc9c8e23f48dd581d3049202ce0dddce13</citedby><cites>FETCH-LOGICAL-c478t-81a85ef551f669362e2031360dc9c4acc9c8e23f48dd581d3049202ce0dddce13</cites><orcidid>0000-0003-0314-6788 ; 0000-0003-4691-517X ; 0000-0002-8391-0354 ; 0000-0001-6846-2154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618538/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618538/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28862673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peters, Eva L</creatorcontrib><creatorcontrib>van der Linde, Sandra M</creatorcontrib><creatorcontrib>Vogel, Ilse S P</creatorcontrib><creatorcontrib>Haroon, Mohammad</creatorcontrib><creatorcontrib>Offringa, Carla</creatorcontrib><creatorcontrib>de Wit, Gerard M J</creatorcontrib><creatorcontrib>Koolwijk, Pieter</creatorcontrib><creatorcontrib>van der Laarse, Willem J</creatorcontrib><creatorcontrib>Jaspers, Richard T</creatorcontrib><title>IGF-1 Attenuates Hypoxia-Induced Atrophy but Inhibits Myoglobin Expression in C2C12 Skeletal Muscle Myotubes</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Chronic hypoxia is associated with muscle wasting and decreased oxidative capacity. By contrast, training under hypoxia may enhance hypertrophy and increase oxidative capacity as well as oxygen transport to the mitochondria, by increasing myoglobin (Mb) expression. The latter may be a feasible strategy to prevent atrophy under hypoxia and enhance an eventual hypertrophic response to anabolic stimulation. Mb expression may be further enhanced by lipid supplementation. We investigated individual and combined effects of hypoxia, insulin-like growth factor (IGF)-1 and lipids, in mouse skeletal muscle C2C12 myotubes. Differentiated C2C12 myotubes were cultured for 24 h under 20%, 5% and 2% oxygen with or without IGF-1 and/or lipid treatment. In culture under 20% oxygen, IGF-1 induced 51% hypertrophy. Hypertrophy was only 32% under 5% and abrogated under 2% oxygen. This was not explained by changes in expression of genes involved in contractile protein synthesis or degradation, suggesting a reduced rate of translation rather than of transcription. Myoglobin mRNA expression increased by 75% under 5% O₂ but decreased by 50% upon IGF-1 treatment under 20% O₂, compared to control. Inhibition of mammalian target of rapamycin (mTOR) activation using rapamycin restored Mb mRNA expression to control levels. Lipid supplementation had no effect on Mb gene expression. Thus, IGF-1-induced anabolic signaling can be a strategy to improve muscle size under mild hypoxia, but lowers Mb gene expression.</description><subject>Animals</subject><subject>Atrophy</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - genetics</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Hypoxia</subject><subject>Hypoxia - genetics</subject><subject>Hypoxia - pathology</subject><subject>Insulin</subject><subject>Insulin-like growth factor I</subject><subject>Insulin-Like Growth Factor I - genetics</subject><subject>Insulin-like growth factors</subject><subject>Lipids</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Muscle contraction</subject><subject>Muscle Contraction - drug effects</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle Fibers, Skeletal - pathology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscular Atrophy - genetics</subject><subject>Muscular Atrophy - pathology</subject><subject>Musculoskeletal system</subject><subject>Myogenic Regulatory Factors</subject><subject>Myoglobin - genetics</subject><subject>Myoglobin - metabolism</subject><subject>Myoglobins</subject><subject>Myotubes</subject><subject>Oxygen - metabolism</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Rapamycin</subject><subject>Rodents</subject><subject>Signal Transduction - drug effects</subject><subject>Skeletal muscle</subject><subject>Succinate Dehydrogenase - genetics</subject><subject>Testosterone Congeners - metabolism</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>Transcription</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUlvFDEQhVsIRBa4cUaWuHBIEy_dHvcFKRplGSlRDsDZctvVGQ8eu_GCMv8-jrJo4FLrp6cqvab5RPA3xgZ8ajfbRAQeiBDDm-aQdJS2GPPF2736oDlKaYMxZbQf3jcHVAhO-YIdNm51edESdJYz-KIyJHS1m8O9Ve3Km6LB1FUM83qHxpLRyq_taHNCN7tw58JoPTq_nyOkZINHtVvSJaHox29wkJVDNyVpB490LiOkD827SbkEH5_zcfPr4vzn8qq9vr1cLc-uW90tRG4FUaKHqe_JxPnAOAWKGWEcGz3oTukaBVA2dcKYXhDDcDdQTDVgY4wGwo6b70-6cxm3UEc-R-XkHO1WxZ0Mysp_N96u5V34K3tORM9EFfj6LBDDnwIpy61NGpxTHkJJktSrCKd0QSv65T90E0r09b1K9ZSSoaZKnTxROoaUIkyvxxAsH22U-zZW_PP-A6_wi2_sARazmSs</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Peters, Eva L</creator><creator>van der Linde, Sandra M</creator><creator>Vogel, Ilse S P</creator><creator>Haroon, Mohammad</creator><creator>Offringa, Carla</creator><creator>de Wit, Gerard M J</creator><creator>Koolwijk, Pieter</creator><creator>van der Laarse, Willem J</creator><creator>Jaspers, Richard T</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0314-6788</orcidid><orcidid>https://orcid.org/0000-0003-4691-517X</orcidid><orcidid>https://orcid.org/0000-0002-8391-0354</orcidid><orcidid>https://orcid.org/0000-0001-6846-2154</orcidid></search><sort><creationdate>20170901</creationdate><title>IGF-1 Attenuates Hypoxia-Induced Atrophy but Inhibits Myoglobin Expression in C2C12 Skeletal Muscle Myotubes</title><author>Peters, Eva L ; van der Linde, Sandra M ; Vogel, Ilse S P ; Haroon, Mohammad ; Offringa, Carla ; de Wit, Gerard M J ; Koolwijk, Pieter ; van der Laarse, Willem J ; Jaspers, Richard T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-81a85ef551f669362e2031360dc9c4acc9c8e23f48dd581d3049202ce0dddce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Atrophy</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - genetics</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Hypoxia</topic><topic>Hypoxia - genetics</topic><topic>Hypoxia - pathology</topic><topic>Insulin</topic><topic>Insulin-like growth factor I</topic><topic>Insulin-Like Growth Factor I - genetics</topic><topic>Insulin-like growth factors</topic><topic>Lipids</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Muscle contraction</topic><topic>Muscle Contraction - drug effects</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle Fibers, Skeletal - pathology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscular Atrophy - genetics</topic><topic>Muscular Atrophy - pathology</topic><topic>Musculoskeletal system</topic><topic>Myogenic Regulatory Factors</topic><topic>Myoglobin - genetics</topic><topic>Myoglobin - metabolism</topic><topic>Myoglobins</topic><topic>Myotubes</topic><topic>Oxygen - metabolism</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Rapamycin</topic><topic>Rodents</topic><topic>Signal Transduction - drug effects</topic><topic>Skeletal muscle</topic><topic>Succinate Dehydrogenase - genetics</topic><topic>Testosterone Congeners - metabolism</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, Eva L</creatorcontrib><creatorcontrib>van der Linde, Sandra M</creatorcontrib><creatorcontrib>Vogel, Ilse S P</creatorcontrib><creatorcontrib>Haroon, Mohammad</creatorcontrib><creatorcontrib>Offringa, Carla</creatorcontrib><creatorcontrib>de Wit, Gerard M J</creatorcontrib><creatorcontrib>Koolwijk, Pieter</creatorcontrib><creatorcontrib>van der Laarse, Willem J</creatorcontrib><creatorcontrib>Jaspers, Richard T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, Eva L</au><au>van der Linde, Sandra M</au><au>Vogel, Ilse S P</au><au>Haroon, Mohammad</au><au>Offringa, Carla</au><au>de Wit, Gerard M J</au><au>Koolwijk, Pieter</au><au>van der Laarse, Willem J</au><au>Jaspers, Richard T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IGF-1 Attenuates Hypoxia-Induced Atrophy but Inhibits Myoglobin Expression in C2C12 Skeletal Muscle Myotubes</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>18</volume><issue>9</issue><spage>1889</spage><pages>1889-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Chronic hypoxia is associated with muscle wasting and decreased oxidative capacity. By contrast, training under hypoxia may enhance hypertrophy and increase oxidative capacity as well as oxygen transport to the mitochondria, by increasing myoglobin (Mb) expression. The latter may be a feasible strategy to prevent atrophy under hypoxia and enhance an eventual hypertrophic response to anabolic stimulation. Mb expression may be further enhanced by lipid supplementation. We investigated individual and combined effects of hypoxia, insulin-like growth factor (IGF)-1 and lipids, in mouse skeletal muscle C2C12 myotubes. Differentiated C2C12 myotubes were cultured for 24 h under 20%, 5% and 2% oxygen with or without IGF-1 and/or lipid treatment. In culture under 20% oxygen, IGF-1 induced 51% hypertrophy. Hypertrophy was only 32% under 5% and abrogated under 2% oxygen. This was not explained by changes in expression of genes involved in contractile protein synthesis or degradation, suggesting a reduced rate of translation rather than of transcription. Myoglobin mRNA expression increased by 75% under 5% O₂ but decreased by 50% upon IGF-1 treatment under 20% O₂, compared to control. Inhibition of mammalian target of rapamycin (mTOR) activation using rapamycin restored Mb mRNA expression to control levels. Lipid supplementation had no effect on Mb gene expression. Thus, IGF-1-induced anabolic signaling can be a strategy to improve muscle size under mild hypoxia, but lowers Mb gene expression.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>28862673</pmid><doi>10.3390/ijms18091889</doi><orcidid>https://orcid.org/0000-0003-0314-6788</orcidid><orcidid>https://orcid.org/0000-0003-4691-517X</orcidid><orcidid>https://orcid.org/0000-0002-8391-0354</orcidid><orcidid>https://orcid.org/0000-0001-6846-2154</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2017-09, Vol.18 (9), p.1889 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5618538 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Atrophy Gene expression Gene Expression Regulation - genetics Humans Hypertrophy Hypoxia Hypoxia - genetics Hypoxia - pathology Insulin Insulin-like growth factor I Insulin-Like Growth Factor I - genetics Insulin-like growth factors Lipids Mice Mitochondria Mitochondria - genetics Mitochondria - metabolism Muscle contraction Muscle Contraction - drug effects Muscle Fibers, Skeletal - metabolism Muscle Fibers, Skeletal - pathology Muscle, Skeletal - metabolism Muscle, Skeletal - pathology Muscular Atrophy - genetics Muscular Atrophy - pathology Musculoskeletal system Myogenic Regulatory Factors Myoglobin - genetics Myoglobin - metabolism Myoglobins Myotubes Oxygen - metabolism Protein biosynthesis Protein synthesis Rapamycin Rodents Signal Transduction - drug effects Skeletal muscle Succinate Dehydrogenase - genetics Testosterone Congeners - metabolism TOR protein TOR Serine-Threonine Kinases - genetics Transcription |
title | IGF-1 Attenuates Hypoxia-Induced Atrophy but Inhibits Myoglobin Expression in C2C12 Skeletal Muscle Myotubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IGF-1%20Attenuates%20Hypoxia-Induced%20Atrophy%20but%20Inhibits%20Myoglobin%20Expression%20in%20C2C12%20Skeletal%20Muscle%20Myotubes&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Peters,%20Eva%20L&rft.date=2017-09-01&rft.volume=18&rft.issue=9&rft.spage=1889&rft.pages=1889-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms18091889&rft_dat=%3Cproquest_pubme%3E1952219195%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952219195&rft_id=info:pmid/28862673&rfr_iscdi=true |