Laser streaming: Turning a laser beam into a flow of liquid

Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2017-09, Vol.3 (9), p.e1700555-e1700555
Hauptverfasser: Wang, Yanan, Zhang, Qiuhui, Zhu, Zhuan, Lin, Feng, Deng, Jiangdong, Ku, Geng, Dong, Suchuan, Song, Shuo, Alam, Md Kamrul, Liu, Dong, Wang, Zhiming, Bao, Jiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1700555
container_issue 9
container_start_page e1700555
container_title Science advances
container_volume 3
creator Wang, Yanan
Zhang, Qiuhui
Zhu, Zhuan
Lin, Feng
Deng, Jiangdong
Ku, Geng
Dong, Suchuan
Song, Shuo
Alam, Md Kamrul
Liu, Dong
Wang, Zhiming
Bao, Jiming
description Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes; the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity, which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, that is, photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquid, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming.
doi_str_mv 10.1126/sciadv.1700555
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5617372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1945216406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-ddd3f0fb56d0ac1ba4d8a3108233cc22fd41c302514fad4b5573a3f91f617ce93</originalsourceid><addsrcrecordid>eNpVkMtLw0AQxhdRbKm9epQcvaTuO4mCIMUXFLzU87LZR11Jsu1uovjfu9pa6mmG-b75ZvgBcI7gDCHMr6JyUn_MUAEhY-wIjDEpWI4ZLY8P-hGYxvgOIUSUc4aqUzDCZcWqAvMxuFnIaEIW-2Bk67rVdbYcQpeaTGbNr1QnIXNd79PENv4z8zZr3GZw-gycWNlEM93VCXh9uF_On_LFy-Pz_G6RK1LBPtdaEwttzbiGUqFaUl1KgmCJCVEKY6spUgRihqiVmtaMFUQSWyHLUaFMRSbgdpu7HurWaGW6PshGrINrZfgSXjrxX-ncm1j5D8FSAClwCrjcBQS_GUzsReuiMk0jO-OHKFBFGUacQp6ss61VBR9jMHZ_BkHxA11soYsd9LRwcfjc3v6HmHwDkmt-iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1945216406</pqid></control><display><type>article</type><title>Laser streaming: Turning a laser beam into a flow of liquid</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wang, Yanan ; Zhang, Qiuhui ; Zhu, Zhuan ; Lin, Feng ; Deng, Jiangdong ; Ku, Geng ; Dong, Suchuan ; Song, Shuo ; Alam, Md Kamrul ; Liu, Dong ; Wang, Zhiming ; Bao, Jiming</creator><creatorcontrib>Wang, Yanan ; Zhang, Qiuhui ; Zhu, Zhuan ; Lin, Feng ; Deng, Jiangdong ; Ku, Geng ; Dong, Suchuan ; Song, Shuo ; Alam, Md Kamrul ; Liu, Dong ; Wang, Zhiming ; Bao, Jiming</creatorcontrib><description>Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes; the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity, which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, that is, photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquid, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.1700555</identifier><identifier>PMID: 28959726</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Applied Acoustics ; Applied Sciences and Engineering ; SciAdv r-articles</subject><ispartof>Science advances, 2017-09, Vol.3 (9), p.e1700555-e1700555</ispartof><rights>Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2017 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-ddd3f0fb56d0ac1ba4d8a3108233cc22fd41c302514fad4b5573a3f91f617ce93</citedby><cites>FETCH-LOGICAL-c390t-ddd3f0fb56d0ac1ba4d8a3108233cc22fd41c302514fad4b5573a3f91f617ce93</cites><orcidid>0000-0003-2381-1407 ; 0000-0001-8026-2331 ; 0000-0001-6778-0679 ; 0000-0001-5723-7074 ; 0000-0002-9663-4491 ; 0000-0003-4150-2288 ; 0000-0003-2945-4834 ; 0000-0002-6819-0117 ; 0000-0003-4377-9053 ; 0000-0001-6590-9600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617372/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617372/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28959726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yanan</creatorcontrib><creatorcontrib>Zhang, Qiuhui</creatorcontrib><creatorcontrib>Zhu, Zhuan</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Deng, Jiangdong</creatorcontrib><creatorcontrib>Ku, Geng</creatorcontrib><creatorcontrib>Dong, Suchuan</creatorcontrib><creatorcontrib>Song, Shuo</creatorcontrib><creatorcontrib>Alam, Md Kamrul</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Wang, Zhiming</creatorcontrib><creatorcontrib>Bao, Jiming</creatorcontrib><title>Laser streaming: Turning a laser beam into a flow of liquid</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes; the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity, which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, that is, photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquid, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming.</description><subject>Applied Acoustics</subject><subject>Applied Sciences and Engineering</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkMtLw0AQxhdRbKm9epQcvaTuO4mCIMUXFLzU87LZR11Jsu1uovjfu9pa6mmG-b75ZvgBcI7gDCHMr6JyUn_MUAEhY-wIjDEpWI4ZLY8P-hGYxvgOIUSUc4aqUzDCZcWqAvMxuFnIaEIW-2Bk67rVdbYcQpeaTGbNr1QnIXNd79PENv4z8zZr3GZw-gycWNlEM93VCXh9uF_On_LFy-Pz_G6RK1LBPtdaEwttzbiGUqFaUl1KgmCJCVEKY6spUgRihqiVmtaMFUQSWyHLUaFMRSbgdpu7HurWaGW6PshGrINrZfgSXjrxX-ncm1j5D8FSAClwCrjcBQS_GUzsReuiMk0jO-OHKFBFGUacQp6ss61VBR9jMHZ_BkHxA11soYsd9LRwcfjc3v6HmHwDkmt-iw</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Wang, Yanan</creator><creator>Zhang, Qiuhui</creator><creator>Zhu, Zhuan</creator><creator>Lin, Feng</creator><creator>Deng, Jiangdong</creator><creator>Ku, Geng</creator><creator>Dong, Suchuan</creator><creator>Song, Shuo</creator><creator>Alam, Md Kamrul</creator><creator>Liu, Dong</creator><creator>Wang, Zhiming</creator><creator>Bao, Jiming</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2381-1407</orcidid><orcidid>https://orcid.org/0000-0001-8026-2331</orcidid><orcidid>https://orcid.org/0000-0001-6778-0679</orcidid><orcidid>https://orcid.org/0000-0001-5723-7074</orcidid><orcidid>https://orcid.org/0000-0002-9663-4491</orcidid><orcidid>https://orcid.org/0000-0003-4150-2288</orcidid><orcidid>https://orcid.org/0000-0003-2945-4834</orcidid><orcidid>https://orcid.org/0000-0002-6819-0117</orcidid><orcidid>https://orcid.org/0000-0003-4377-9053</orcidid><orcidid>https://orcid.org/0000-0001-6590-9600</orcidid></search><sort><creationdate>20170901</creationdate><title>Laser streaming: Turning a laser beam into a flow of liquid</title><author>Wang, Yanan ; Zhang, Qiuhui ; Zhu, Zhuan ; Lin, Feng ; Deng, Jiangdong ; Ku, Geng ; Dong, Suchuan ; Song, Shuo ; Alam, Md Kamrul ; Liu, Dong ; Wang, Zhiming ; Bao, Jiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-ddd3f0fb56d0ac1ba4d8a3108233cc22fd41c302514fad4b5573a3f91f617ce93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied Acoustics</topic><topic>Applied Sciences and Engineering</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yanan</creatorcontrib><creatorcontrib>Zhang, Qiuhui</creatorcontrib><creatorcontrib>Zhu, Zhuan</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Deng, Jiangdong</creatorcontrib><creatorcontrib>Ku, Geng</creatorcontrib><creatorcontrib>Dong, Suchuan</creatorcontrib><creatorcontrib>Song, Shuo</creatorcontrib><creatorcontrib>Alam, Md Kamrul</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Wang, Zhiming</creatorcontrib><creatorcontrib>Bao, Jiming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yanan</au><au>Zhang, Qiuhui</au><au>Zhu, Zhuan</au><au>Lin, Feng</au><au>Deng, Jiangdong</au><au>Ku, Geng</au><au>Dong, Suchuan</au><au>Song, Shuo</au><au>Alam, Md Kamrul</au><au>Liu, Dong</au><au>Wang, Zhiming</au><au>Bao, Jiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser streaming: Turning a laser beam into a flow of liquid</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>3</volume><issue>9</issue><spage>e1700555</spage><epage>e1700555</epage><pages>e1700555-e1700555</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes; the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity, which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, that is, photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquid, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28959726</pmid><doi>10.1126/sciadv.1700555</doi><orcidid>https://orcid.org/0000-0003-2381-1407</orcidid><orcidid>https://orcid.org/0000-0001-8026-2331</orcidid><orcidid>https://orcid.org/0000-0001-6778-0679</orcidid><orcidid>https://orcid.org/0000-0001-5723-7074</orcidid><orcidid>https://orcid.org/0000-0002-9663-4491</orcidid><orcidid>https://orcid.org/0000-0003-4150-2288</orcidid><orcidid>https://orcid.org/0000-0003-2945-4834</orcidid><orcidid>https://orcid.org/0000-0002-6819-0117</orcidid><orcidid>https://orcid.org/0000-0003-4377-9053</orcidid><orcidid>https://orcid.org/0000-0001-6590-9600</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2017-09, Vol.3 (9), p.e1700555-e1700555
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5617372
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Applied Acoustics
Applied Sciences and Engineering
SciAdv r-articles
title Laser streaming: Turning a laser beam into a flow of liquid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20streaming:%20Turning%20a%20laser%20beam%20into%20a%20flow%20of%20liquid&rft.jtitle=Science%20advances&rft.au=Wang,%20Yanan&rft.date=2017-09-01&rft.volume=3&rft.issue=9&rft.spage=e1700555&rft.epage=e1700555&rft.pages=e1700555-e1700555&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.1700555&rft_dat=%3Cproquest_pubme%3E1945216406%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1945216406&rft_id=info:pmid/28959726&rfr_iscdi=true