Developing a practical suicide risk prediction model for targeting high‐risk patients in the Veterans health Administration

Objectives The US Veterans Health Administration (VHA) has begun using predictive modeling to identify Veterans at high suicide risk to target care. Initial analyses are reported here. Methods A penalized logistic regression model was compared with an earlier proof‐of‐concept logistic model. Explora...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of methods in psychiatric research 2017-09, Vol.26 (3), p.n/a
Hauptverfasser: Kessler, Ronald C., Hwang, Irving, Hoffmire, Claire A., McCarthy, John F., Petukhova, Maria V., Rosellini, Anthony J., Sampson, Nancy A., Schneider, Alexandra L., Bradley, Paul A., Katz, Ira R., Thompson, Caitlin, Bossarte, Robert M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title International journal of methods in psychiatric research
container_volume 26
creator Kessler, Ronald C.
Hwang, Irving
Hoffmire, Claire A.
McCarthy, John F.
Petukhova, Maria V.
Rosellini, Anthony J.
Sampson, Nancy A.
Schneider, Alexandra L.
Bradley, Paul A.
Katz, Ira R.
Thompson, Caitlin
Bossarte, Robert M.
description Objectives The US Veterans Health Administration (VHA) has begun using predictive modeling to identify Veterans at high suicide risk to target care. Initial analyses are reported here. Methods A penalized logistic regression model was compared with an earlier proof‐of‐concept logistic model. Exploratory analyses then considered commonly‐used machine learning algorithms. Analyses were based on electronic medical records for all 6,360 individuals classified in the National Death Index as having died by suicide in fiscal years 2009–2011 who used VHA services the year of their death or prior year and a 1% probability sample of time‐matched VHA service users alive at the index date (n = 2,112,008). Results A penalized logistic model with 61 predictors had sensitivity comparable to the proof‐of‐concept model (which had 381 predictors) at target thresholds. The machine learning algorithms had relatively similar sensitivities, the highest being for Bayesian additive regression trees, with 10.7% of suicides occurred among the 1.0% of Veterans with highest predicted risk and 28.1% among the 5.0% of with highest predicted risk. Conclusions Based on these results, VHA is using penalized logistic regression in initial intervention implementation. The paper concludes with a discussion of other practical issues that might be explored to increase model performance.
doi_str_mv 10.1002/mpr.1575
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5614864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1942428449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4385-2f8847c16f0eaf7ef08626725a5fc4ac25794c5180608b1b240a5b2788ffb9003</originalsourceid><addsrcrecordid>eNp1kdtqFTEUhgdR7EHBJ5CAN95MTbJzmhuhVGsLFUXU25DJrOxJnZlMk0ylF4KP4DP2SZrtrvUAXiVkfflYa_1V9YTgA4IxfTHO8YBwye9Vu4RzWWPB5f1yx6ypVbMiO9VeSucYE0WpeFjtUCUkF0TuVt9ewSUMYfbTGhk0R2Ozt2ZAafHWd4CiT1_KM3S-FMKExtDBgFyIKJu4hrz51_t1f_39xxY12cOUE_ITyj2gz5AhmimhHsyQe3TYjX7yKUez0T2qHjgzJHh8e-5Xn45ffzw6qc_evTk9OjyrLVspXlOnFJOWCIfBOAkOK0GFpNxwZ5mxlMuGWU4UFli1pKUMG95SqZRzbYPxar96ufXOSztCZ0uH0Qx6jn408UoH4_Xflcn3eh0udVkSU4IVwfNbQQwXC6SsR58sDIOZICxJk4ZwVZYrRUGf_YOehyVOZbxCMcqoYqz5LbQxpBTB3TVDsN5kqkumepNpQZ_-2fwd-CvEAtRb4Ksf4Oq_Iv32_YefwhvvPq5j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942428449</pqid></control><display><type>article</type><title>Developing a practical suicide risk prediction model for targeting high‐risk patients in the Veterans health Administration</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kessler, Ronald C. ; Hwang, Irving ; Hoffmire, Claire A. ; McCarthy, John F. ; Petukhova, Maria V. ; Rosellini, Anthony J. ; Sampson, Nancy A. ; Schneider, Alexandra L. ; Bradley, Paul A. ; Katz, Ira R. ; Thompson, Caitlin ; Bossarte, Robert M.</creator><creatorcontrib>Kessler, Ronald C. ; Hwang, Irving ; Hoffmire, Claire A. ; McCarthy, John F. ; Petukhova, Maria V. ; Rosellini, Anthony J. ; Sampson, Nancy A. ; Schneider, Alexandra L. ; Bradley, Paul A. ; Katz, Ira R. ; Thompson, Caitlin ; Bossarte, Robert M.</creatorcontrib><description>Objectives The US Veterans Health Administration (VHA) has begun using predictive modeling to identify Veterans at high suicide risk to target care. Initial analyses are reported here. Methods A penalized logistic regression model was compared with an earlier proof‐of‐concept logistic model. Exploratory analyses then considered commonly‐used machine learning algorithms. Analyses were based on electronic medical records for all 6,360 individuals classified in the National Death Index as having died by suicide in fiscal years 2009–2011 who used VHA services the year of their death or prior year and a 1% probability sample of time‐matched VHA service users alive at the index date (n = 2,112,008). Results A penalized logistic model with 61 predictors had sensitivity comparable to the proof‐of‐concept model (which had 381 predictors) at target thresholds. The machine learning algorithms had relatively similar sensitivities, the highest being for Bayesian additive regression trees, with 10.7% of suicides occurred among the 1.0% of Veterans with highest predicted risk and 28.1% among the 5.0% of with highest predicted risk. Conclusions Based on these results, VHA is using penalized logistic regression in initial intervention implementation. The paper concludes with a discussion of other practical issues that might be explored to increase model performance.</description><identifier>ISSN: 1049-8931</identifier><identifier>EISSN: 1557-0657</identifier><identifier>DOI: 10.1002/mpr.1575</identifier><identifier>PMID: 28675617</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Adolescent ; Adult ; Aged ; Aged, 80 and over ; Algorithms ; Artificial intelligence ; assessment/diagnosis ; Bayesian analysis ; clinical decision support ; Electronic medical records ; epidemiology ; Female ; Humans ; Learning algorithms ; machine learning ; Male ; Middle Aged ; Models, Statistical ; Original ; predictive modeling ; Regression analysis ; Risk Assessment - methods ; Risk groups ; Suicide ; Suicide - statistics &amp; numerical data ; suicide/self harm ; Suicides &amp; suicide attempts ; United States - epidemiology ; United States Department of Veterans Affairs ; Veterans ; Young Adult</subject><ispartof>International journal of methods in psychiatric research, 2017-09, Vol.26 (3), p.n/a</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4385-2f8847c16f0eaf7ef08626725a5fc4ac25794c5180608b1b240a5b2788ffb9003</citedby><cites>FETCH-LOGICAL-c4385-2f8847c16f0eaf7ef08626725a5fc4ac25794c5180608b1b240a5b2788ffb9003</cites><orcidid>0000-0003-4831-2305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614864/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614864/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28675617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kessler, Ronald C.</creatorcontrib><creatorcontrib>Hwang, Irving</creatorcontrib><creatorcontrib>Hoffmire, Claire A.</creatorcontrib><creatorcontrib>McCarthy, John F.</creatorcontrib><creatorcontrib>Petukhova, Maria V.</creatorcontrib><creatorcontrib>Rosellini, Anthony J.</creatorcontrib><creatorcontrib>Sampson, Nancy A.</creatorcontrib><creatorcontrib>Schneider, Alexandra L.</creatorcontrib><creatorcontrib>Bradley, Paul A.</creatorcontrib><creatorcontrib>Katz, Ira R.</creatorcontrib><creatorcontrib>Thompson, Caitlin</creatorcontrib><creatorcontrib>Bossarte, Robert M.</creatorcontrib><title>Developing a practical suicide risk prediction model for targeting high‐risk patients in the Veterans health Administration</title><title>International journal of methods in psychiatric research</title><addtitle>Int J Methods Psychiatr Res</addtitle><description>Objectives The US Veterans Health Administration (VHA) has begun using predictive modeling to identify Veterans at high suicide risk to target care. Initial analyses are reported here. Methods A penalized logistic regression model was compared with an earlier proof‐of‐concept logistic model. Exploratory analyses then considered commonly‐used machine learning algorithms. Analyses were based on electronic medical records for all 6,360 individuals classified in the National Death Index as having died by suicide in fiscal years 2009–2011 who used VHA services the year of their death or prior year and a 1% probability sample of time‐matched VHA service users alive at the index date (n = 2,112,008). Results A penalized logistic model with 61 predictors had sensitivity comparable to the proof‐of‐concept model (which had 381 predictors) at target thresholds. The machine learning algorithms had relatively similar sensitivities, the highest being for Bayesian additive regression trees, with 10.7% of suicides occurred among the 1.0% of Veterans with highest predicted risk and 28.1% among the 5.0% of with highest predicted risk. Conclusions Based on these results, VHA is using penalized logistic regression in initial intervention implementation. The paper concludes with a discussion of other practical issues that might be explored to increase model performance.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>assessment/diagnosis</subject><subject>Bayesian analysis</subject><subject>clinical decision support</subject><subject>Electronic medical records</subject><subject>epidemiology</subject><subject>Female</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>machine learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Original</subject><subject>predictive modeling</subject><subject>Regression analysis</subject><subject>Risk Assessment - methods</subject><subject>Risk groups</subject><subject>Suicide</subject><subject>Suicide - statistics &amp; numerical data</subject><subject>suicide/self harm</subject><subject>Suicides &amp; suicide attempts</subject><subject>United States - epidemiology</subject><subject>United States Department of Veterans Affairs</subject><subject>Veterans</subject><subject>Young Adult</subject><issn>1049-8931</issn><issn>1557-0657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kdtqFTEUhgdR7EHBJ5CAN95MTbJzmhuhVGsLFUXU25DJrOxJnZlMk0ylF4KP4DP2SZrtrvUAXiVkfflYa_1V9YTgA4IxfTHO8YBwye9Vu4RzWWPB5f1yx6ypVbMiO9VeSucYE0WpeFjtUCUkF0TuVt9ewSUMYfbTGhk0R2Ozt2ZAafHWd4CiT1_KM3S-FMKExtDBgFyIKJu4hrz51_t1f_39xxY12cOUE_ITyj2gz5AhmimhHsyQe3TYjX7yKUez0T2qHjgzJHh8e-5Xn45ffzw6qc_evTk9OjyrLVspXlOnFJOWCIfBOAkOK0GFpNxwZ5mxlMuGWU4UFli1pKUMG95SqZRzbYPxar96ufXOSztCZ0uH0Qx6jn408UoH4_Xflcn3eh0udVkSU4IVwfNbQQwXC6SsR58sDIOZICxJk4ZwVZYrRUGf_YOehyVOZbxCMcqoYqz5LbQxpBTB3TVDsN5kqkumepNpQZ_-2fwd-CvEAtRb4Ksf4Oq_Iv32_YefwhvvPq5j</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Kessler, Ronald C.</creator><creator>Hwang, Irving</creator><creator>Hoffmire, Claire A.</creator><creator>McCarthy, John F.</creator><creator>Petukhova, Maria V.</creator><creator>Rosellini, Anthony J.</creator><creator>Sampson, Nancy A.</creator><creator>Schneider, Alexandra L.</creator><creator>Bradley, Paul A.</creator><creator>Katz, Ira R.</creator><creator>Thompson, Caitlin</creator><creator>Bossarte, Robert M.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4831-2305</orcidid></search><sort><creationdate>201709</creationdate><title>Developing a practical suicide risk prediction model for targeting high‐risk patients in the Veterans health Administration</title><author>Kessler, Ronald C. ; Hwang, Irving ; Hoffmire, Claire A. ; McCarthy, John F. ; Petukhova, Maria V. ; Rosellini, Anthony J. ; Sampson, Nancy A. ; Schneider, Alexandra L. ; Bradley, Paul A. ; Katz, Ira R. ; Thompson, Caitlin ; Bossarte, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4385-2f8847c16f0eaf7ef08626725a5fc4ac25794c5180608b1b240a5b2788ffb9003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>assessment/diagnosis</topic><topic>Bayesian analysis</topic><topic>clinical decision support</topic><topic>Electronic medical records</topic><topic>epidemiology</topic><topic>Female</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>machine learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Original</topic><topic>predictive modeling</topic><topic>Regression analysis</topic><topic>Risk Assessment - methods</topic><topic>Risk groups</topic><topic>Suicide</topic><topic>Suicide - statistics &amp; numerical data</topic><topic>suicide/self harm</topic><topic>Suicides &amp; suicide attempts</topic><topic>United States - epidemiology</topic><topic>United States Department of Veterans Affairs</topic><topic>Veterans</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kessler, Ronald C.</creatorcontrib><creatorcontrib>Hwang, Irving</creatorcontrib><creatorcontrib>Hoffmire, Claire A.</creatorcontrib><creatorcontrib>McCarthy, John F.</creatorcontrib><creatorcontrib>Petukhova, Maria V.</creatorcontrib><creatorcontrib>Rosellini, Anthony J.</creatorcontrib><creatorcontrib>Sampson, Nancy A.</creatorcontrib><creatorcontrib>Schneider, Alexandra L.</creatorcontrib><creatorcontrib>Bradley, Paul A.</creatorcontrib><creatorcontrib>Katz, Ira R.</creatorcontrib><creatorcontrib>Thompson, Caitlin</creatorcontrib><creatorcontrib>Bossarte, Robert M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of methods in psychiatric research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kessler, Ronald C.</au><au>Hwang, Irving</au><au>Hoffmire, Claire A.</au><au>McCarthy, John F.</au><au>Petukhova, Maria V.</au><au>Rosellini, Anthony J.</au><au>Sampson, Nancy A.</au><au>Schneider, Alexandra L.</au><au>Bradley, Paul A.</au><au>Katz, Ira R.</au><au>Thompson, Caitlin</au><au>Bossarte, Robert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing a practical suicide risk prediction model for targeting high‐risk patients in the Veterans health Administration</atitle><jtitle>International journal of methods in psychiatric research</jtitle><addtitle>Int J Methods Psychiatr Res</addtitle><date>2017-09</date><risdate>2017</risdate><volume>26</volume><issue>3</issue><epage>n/a</epage><issn>1049-8931</issn><eissn>1557-0657</eissn><abstract>Objectives The US Veterans Health Administration (VHA) has begun using predictive modeling to identify Veterans at high suicide risk to target care. Initial analyses are reported here. Methods A penalized logistic regression model was compared with an earlier proof‐of‐concept logistic model. Exploratory analyses then considered commonly‐used machine learning algorithms. Analyses were based on electronic medical records for all 6,360 individuals classified in the National Death Index as having died by suicide in fiscal years 2009–2011 who used VHA services the year of their death or prior year and a 1% probability sample of time‐matched VHA service users alive at the index date (n = 2,112,008). Results A penalized logistic model with 61 predictors had sensitivity comparable to the proof‐of‐concept model (which had 381 predictors) at target thresholds. The machine learning algorithms had relatively similar sensitivities, the highest being for Bayesian additive regression trees, with 10.7% of suicides occurred among the 1.0% of Veterans with highest predicted risk and 28.1% among the 5.0% of with highest predicted risk. Conclusions Based on these results, VHA is using penalized logistic regression in initial intervention implementation. The paper concludes with a discussion of other practical issues that might be explored to increase model performance.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>28675617</pmid><doi>10.1002/mpr.1575</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4831-2305</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1049-8931
ispartof International journal of methods in psychiatric research, 2017-09, Vol.26 (3), p.n/a
issn 1049-8931
1557-0657
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5614864
source MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Artificial intelligence
assessment/diagnosis
Bayesian analysis
clinical decision support
Electronic medical records
epidemiology
Female
Humans
Learning algorithms
machine learning
Male
Middle Aged
Models, Statistical
Original
predictive modeling
Regression analysis
Risk Assessment - methods
Risk groups
Suicide
Suicide - statistics & numerical data
suicide/self harm
Suicides & suicide attempts
United States - epidemiology
United States Department of Veterans Affairs
Veterans
Young Adult
title Developing a practical suicide risk prediction model for targeting high‐risk patients in the Veterans health Administration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20a%20practical%20suicide%20risk%20prediction%20model%20for%20targeting%20high%E2%80%90risk%20patients%20in%20the%20Veterans%20health%20Administration&rft.jtitle=International%20journal%20of%20methods%20in%20psychiatric%20research&rft.au=Kessler,%20Ronald%20C.&rft.date=2017-09&rft.volume=26&rft.issue=3&rft.epage=n/a&rft.issn=1049-8931&rft.eissn=1557-0657&rft_id=info:doi/10.1002/mpr.1575&rft_dat=%3Cproquest_pubme%3E1942428449%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942428449&rft_id=info:pmid/28675617&rfr_iscdi=true