Developing a practical suicide risk prediction model for targeting high‐risk patients in the Veterans health Administration
Objectives The US Veterans Health Administration (VHA) has begun using predictive modeling to identify Veterans at high suicide risk to target care. Initial analyses are reported here. Methods A penalized logistic regression model was compared with an earlier proof‐of‐concept logistic model. Explora...
Gespeichert in:
Veröffentlicht in: | International journal of methods in psychiatric research 2017-09, Vol.26 (3), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | |
container_title | International journal of methods in psychiatric research |
container_volume | 26 |
creator | Kessler, Ronald C. Hwang, Irving Hoffmire, Claire A. McCarthy, John F. Petukhova, Maria V. Rosellini, Anthony J. Sampson, Nancy A. Schneider, Alexandra L. Bradley, Paul A. Katz, Ira R. Thompson, Caitlin Bossarte, Robert M. |
description | Objectives
The US Veterans Health Administration (VHA) has begun using predictive modeling to identify Veterans at high suicide risk to target care. Initial analyses are reported here.
Methods
A penalized logistic regression model was compared with an earlier proof‐of‐concept logistic model. Exploratory analyses then considered commonly‐used machine learning algorithms. Analyses were based on electronic medical records for all 6,360 individuals classified in the National Death Index as having died by suicide in fiscal years 2009–2011 who used VHA services the year of their death or prior year and a 1% probability sample of time‐matched VHA service users alive at the index date (n = 2,112,008).
Results
A penalized logistic model with 61 predictors had sensitivity comparable to the proof‐of‐concept model (which had 381 predictors) at target thresholds. The machine learning algorithms had relatively similar sensitivities, the highest being for Bayesian additive regression trees, with 10.7% of suicides occurred among the 1.0% of Veterans with highest predicted risk and 28.1% among the 5.0% of with highest predicted risk.
Conclusions
Based on these results, VHA is using penalized logistic regression in initial intervention implementation. The paper concludes with a discussion of other practical issues that might be explored to increase model performance. |
doi_str_mv | 10.1002/mpr.1575 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5614864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1942428449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4385-2f8847c16f0eaf7ef08626725a5fc4ac25794c5180608b1b240a5b2788ffb9003</originalsourceid><addsrcrecordid>eNp1kdtqFTEUhgdR7EHBJ5CAN95MTbJzmhuhVGsLFUXU25DJrOxJnZlMk0ylF4KP4DP2SZrtrvUAXiVkfflYa_1V9YTgA4IxfTHO8YBwye9Vu4RzWWPB5f1yx6ypVbMiO9VeSucYE0WpeFjtUCUkF0TuVt9ewSUMYfbTGhk0R2Ozt2ZAafHWd4CiT1_KM3S-FMKExtDBgFyIKJu4hrz51_t1f_39xxY12cOUE_ITyj2gz5AhmimhHsyQe3TYjX7yKUez0T2qHjgzJHh8e-5Xn45ffzw6qc_evTk9OjyrLVspXlOnFJOWCIfBOAkOK0GFpNxwZ5mxlMuGWU4UFli1pKUMG95SqZRzbYPxar96ufXOSztCZ0uH0Qx6jn408UoH4_Xflcn3eh0udVkSU4IVwfNbQQwXC6SsR58sDIOZICxJk4ZwVZYrRUGf_YOehyVOZbxCMcqoYqz5LbQxpBTB3TVDsN5kqkumepNpQZ_-2fwd-CvEAtRb4Ksf4Oq_Iv32_YefwhvvPq5j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942428449</pqid></control><display><type>article</type><title>Developing a practical suicide risk prediction model for targeting high‐risk patients in the Veterans health Administration</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kessler, Ronald C. ; Hwang, Irving ; Hoffmire, Claire A. ; McCarthy, John F. ; Petukhova, Maria V. ; Rosellini, Anthony J. ; Sampson, Nancy A. ; Schneider, Alexandra L. ; Bradley, Paul A. ; Katz, Ira R. ; Thompson, Caitlin ; Bossarte, Robert M.</creator><creatorcontrib>Kessler, Ronald C. ; Hwang, Irving ; Hoffmire, Claire A. ; McCarthy, John F. ; Petukhova, Maria V. ; Rosellini, Anthony J. ; Sampson, Nancy A. ; Schneider, Alexandra L. ; Bradley, Paul A. ; Katz, Ira R. ; Thompson, Caitlin ; Bossarte, Robert M.</creatorcontrib><description>Objectives
The US Veterans Health Administration (VHA) has begun using predictive modeling to identify Veterans at high suicide risk to target care. Initial analyses are reported here.
Methods
A penalized logistic regression model was compared with an earlier proof‐of‐concept logistic model. Exploratory analyses then considered commonly‐used machine learning algorithms. Analyses were based on electronic medical records for all 6,360 individuals classified in the National Death Index as having died by suicide in fiscal years 2009–2011 who used VHA services the year of their death or prior year and a 1% probability sample of time‐matched VHA service users alive at the index date (n = 2,112,008).
Results
A penalized logistic model with 61 predictors had sensitivity comparable to the proof‐of‐concept model (which had 381 predictors) at target thresholds. The machine learning algorithms had relatively similar sensitivities, the highest being for Bayesian additive regression trees, with 10.7% of suicides occurred among the 1.0% of Veterans with highest predicted risk and 28.1% among the 5.0% of with highest predicted risk.
Conclusions
Based on these results, VHA is using penalized logistic regression in initial intervention implementation. The paper concludes with a discussion of other practical issues that might be explored to increase model performance.</description><identifier>ISSN: 1049-8931</identifier><identifier>EISSN: 1557-0657</identifier><identifier>DOI: 10.1002/mpr.1575</identifier><identifier>PMID: 28675617</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Adolescent ; Adult ; Aged ; Aged, 80 and over ; Algorithms ; Artificial intelligence ; assessment/diagnosis ; Bayesian analysis ; clinical decision support ; Electronic medical records ; epidemiology ; Female ; Humans ; Learning algorithms ; machine learning ; Male ; Middle Aged ; Models, Statistical ; Original ; predictive modeling ; Regression analysis ; Risk Assessment - methods ; Risk groups ; Suicide ; Suicide - statistics & numerical data ; suicide/self harm ; Suicides & suicide attempts ; United States - epidemiology ; United States Department of Veterans Affairs ; Veterans ; Young Adult</subject><ispartof>International journal of methods in psychiatric research, 2017-09, Vol.26 (3), p.n/a</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4385-2f8847c16f0eaf7ef08626725a5fc4ac25794c5180608b1b240a5b2788ffb9003</citedby><cites>FETCH-LOGICAL-c4385-2f8847c16f0eaf7ef08626725a5fc4ac25794c5180608b1b240a5b2788ffb9003</cites><orcidid>0000-0003-4831-2305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614864/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614864/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28675617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kessler, Ronald C.</creatorcontrib><creatorcontrib>Hwang, Irving</creatorcontrib><creatorcontrib>Hoffmire, Claire A.</creatorcontrib><creatorcontrib>McCarthy, John F.</creatorcontrib><creatorcontrib>Petukhova, Maria V.</creatorcontrib><creatorcontrib>Rosellini, Anthony J.</creatorcontrib><creatorcontrib>Sampson, Nancy A.</creatorcontrib><creatorcontrib>Schneider, Alexandra L.</creatorcontrib><creatorcontrib>Bradley, Paul A.</creatorcontrib><creatorcontrib>Katz, Ira R.</creatorcontrib><creatorcontrib>Thompson, Caitlin</creatorcontrib><creatorcontrib>Bossarte, Robert M.</creatorcontrib><title>Developing a practical suicide risk prediction model for targeting high‐risk patients in the Veterans health Administration</title><title>International journal of methods in psychiatric research</title><addtitle>Int J Methods Psychiatr Res</addtitle><description>Objectives
The US Veterans Health Administration (VHA) has begun using predictive modeling to identify Veterans at high suicide risk to target care. Initial analyses are reported here.
Methods
A penalized logistic regression model was compared with an earlier proof‐of‐concept logistic model. Exploratory analyses then considered commonly‐used machine learning algorithms. Analyses were based on electronic medical records for all 6,360 individuals classified in the National Death Index as having died by suicide in fiscal years 2009–2011 who used VHA services the year of their death or prior year and a 1% probability sample of time‐matched VHA service users alive at the index date (n = 2,112,008).
Results
A penalized logistic model with 61 predictors had sensitivity comparable to the proof‐of‐concept model (which had 381 predictors) at target thresholds. The machine learning algorithms had relatively similar sensitivities, the highest being for Bayesian additive regression trees, with 10.7% of suicides occurred among the 1.0% of Veterans with highest predicted risk and 28.1% among the 5.0% of with highest predicted risk.
Conclusions
Based on these results, VHA is using penalized logistic regression in initial intervention implementation. The paper concludes with a discussion of other practical issues that might be explored to increase model performance.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>assessment/diagnosis</subject><subject>Bayesian analysis</subject><subject>clinical decision support</subject><subject>Electronic medical records</subject><subject>epidemiology</subject><subject>Female</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>machine learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Original</subject><subject>predictive modeling</subject><subject>Regression analysis</subject><subject>Risk Assessment - methods</subject><subject>Risk groups</subject><subject>Suicide</subject><subject>Suicide - statistics & numerical data</subject><subject>suicide/self harm</subject><subject>Suicides & suicide attempts</subject><subject>United States - epidemiology</subject><subject>United States Department of Veterans Affairs</subject><subject>Veterans</subject><subject>Young Adult</subject><issn>1049-8931</issn><issn>1557-0657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kdtqFTEUhgdR7EHBJ5CAN95MTbJzmhuhVGsLFUXU25DJrOxJnZlMk0ylF4KP4DP2SZrtrvUAXiVkfflYa_1V9YTgA4IxfTHO8YBwye9Vu4RzWWPB5f1yx6ypVbMiO9VeSucYE0WpeFjtUCUkF0TuVt9ewSUMYfbTGhk0R2Ozt2ZAafHWd4CiT1_KM3S-FMKExtDBgFyIKJu4hrz51_t1f_39xxY12cOUE_ITyj2gz5AhmimhHsyQe3TYjX7yKUez0T2qHjgzJHh8e-5Xn45ffzw6qc_evTk9OjyrLVspXlOnFJOWCIfBOAkOK0GFpNxwZ5mxlMuGWU4UFli1pKUMG95SqZRzbYPxar96ufXOSztCZ0uH0Qx6jn408UoH4_Xflcn3eh0udVkSU4IVwfNbQQwXC6SsR58sDIOZICxJk4ZwVZYrRUGf_YOehyVOZbxCMcqoYqz5LbQxpBTB3TVDsN5kqkumepNpQZ_-2fwd-CvEAtRb4Ksf4Oq_Iv32_YefwhvvPq5j</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Kessler, Ronald C.</creator><creator>Hwang, Irving</creator><creator>Hoffmire, Claire A.</creator><creator>McCarthy, John F.</creator><creator>Petukhova, Maria V.</creator><creator>Rosellini, Anthony J.</creator><creator>Sampson, Nancy A.</creator><creator>Schneider, Alexandra L.</creator><creator>Bradley, Paul A.</creator><creator>Katz, Ira R.</creator><creator>Thompson, Caitlin</creator><creator>Bossarte, Robert M.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4831-2305</orcidid></search><sort><creationdate>201709</creationdate><title>Developing a practical suicide risk prediction model for targeting high‐risk patients in the Veterans health Administration</title><author>Kessler, Ronald C. ; Hwang, Irving ; Hoffmire, Claire A. ; McCarthy, John F. ; Petukhova, Maria V. ; Rosellini, Anthony J. ; Sampson, Nancy A. ; Schneider, Alexandra L. ; Bradley, Paul A. ; Katz, Ira R. ; Thompson, Caitlin ; Bossarte, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4385-2f8847c16f0eaf7ef08626725a5fc4ac25794c5180608b1b240a5b2788ffb9003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>assessment/diagnosis</topic><topic>Bayesian analysis</topic><topic>clinical decision support</topic><topic>Electronic medical records</topic><topic>epidemiology</topic><topic>Female</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>machine learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Original</topic><topic>predictive modeling</topic><topic>Regression analysis</topic><topic>Risk Assessment - methods</topic><topic>Risk groups</topic><topic>Suicide</topic><topic>Suicide - statistics & numerical data</topic><topic>suicide/self harm</topic><topic>Suicides & suicide attempts</topic><topic>United States - epidemiology</topic><topic>United States Department of Veterans Affairs</topic><topic>Veterans</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kessler, Ronald C.</creatorcontrib><creatorcontrib>Hwang, Irving</creatorcontrib><creatorcontrib>Hoffmire, Claire A.</creatorcontrib><creatorcontrib>McCarthy, John F.</creatorcontrib><creatorcontrib>Petukhova, Maria V.</creatorcontrib><creatorcontrib>Rosellini, Anthony J.</creatorcontrib><creatorcontrib>Sampson, Nancy A.</creatorcontrib><creatorcontrib>Schneider, Alexandra L.</creatorcontrib><creatorcontrib>Bradley, Paul A.</creatorcontrib><creatorcontrib>Katz, Ira R.</creatorcontrib><creatorcontrib>Thompson, Caitlin</creatorcontrib><creatorcontrib>Bossarte, Robert M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of methods in psychiatric research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kessler, Ronald C.</au><au>Hwang, Irving</au><au>Hoffmire, Claire A.</au><au>McCarthy, John F.</au><au>Petukhova, Maria V.</au><au>Rosellini, Anthony J.</au><au>Sampson, Nancy A.</au><au>Schneider, Alexandra L.</au><au>Bradley, Paul A.</au><au>Katz, Ira R.</au><au>Thompson, Caitlin</au><au>Bossarte, Robert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing a practical suicide risk prediction model for targeting high‐risk patients in the Veterans health Administration</atitle><jtitle>International journal of methods in psychiatric research</jtitle><addtitle>Int J Methods Psychiatr Res</addtitle><date>2017-09</date><risdate>2017</risdate><volume>26</volume><issue>3</issue><epage>n/a</epage><issn>1049-8931</issn><eissn>1557-0657</eissn><abstract>Objectives
The US Veterans Health Administration (VHA) has begun using predictive modeling to identify Veterans at high suicide risk to target care. Initial analyses are reported here.
Methods
A penalized logistic regression model was compared with an earlier proof‐of‐concept logistic model. Exploratory analyses then considered commonly‐used machine learning algorithms. Analyses were based on electronic medical records for all 6,360 individuals classified in the National Death Index as having died by suicide in fiscal years 2009–2011 who used VHA services the year of their death or prior year and a 1% probability sample of time‐matched VHA service users alive at the index date (n = 2,112,008).
Results
A penalized logistic model with 61 predictors had sensitivity comparable to the proof‐of‐concept model (which had 381 predictors) at target thresholds. The machine learning algorithms had relatively similar sensitivities, the highest being for Bayesian additive regression trees, with 10.7% of suicides occurred among the 1.0% of Veterans with highest predicted risk and 28.1% among the 5.0% of with highest predicted risk.
Conclusions
Based on these results, VHA is using penalized logistic regression in initial intervention implementation. The paper concludes with a discussion of other practical issues that might be explored to increase model performance.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>28675617</pmid><doi>10.1002/mpr.1575</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4831-2305</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8931 |
ispartof | International journal of methods in psychiatric research, 2017-09, Vol.26 (3), p.n/a |
issn | 1049-8931 1557-0657 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5614864 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adolescent Adult Aged Aged, 80 and over Algorithms Artificial intelligence assessment/diagnosis Bayesian analysis clinical decision support Electronic medical records epidemiology Female Humans Learning algorithms machine learning Male Middle Aged Models, Statistical Original predictive modeling Regression analysis Risk Assessment - methods Risk groups Suicide Suicide - statistics & numerical data suicide/self harm Suicides & suicide attempts United States - epidemiology United States Department of Veterans Affairs Veterans Young Adult |
title | Developing a practical suicide risk prediction model for targeting high‐risk patients in the Veterans health Administration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20a%20practical%20suicide%20risk%20prediction%20model%20for%20targeting%20high%E2%80%90risk%20patients%20in%20the%20Veterans%20health%20Administration&rft.jtitle=International%20journal%20of%20methods%20in%20psychiatric%20research&rft.au=Kessler,%20Ronald%20C.&rft.date=2017-09&rft.volume=26&rft.issue=3&rft.epage=n/a&rft.issn=1049-8931&rft.eissn=1557-0657&rft_id=info:doi/10.1002/mpr.1575&rft_dat=%3Cproquest_pubme%3E1942428449%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942428449&rft_id=info:pmid/28675617&rfr_iscdi=true |