Microenvironmental autophagy promotes tumour growth
During early-stage tumour growth in Drosphila, tumour cells acquire necessary nutrients by triggering autophagy in surrounding cells in the tumour microenvironment. Induced autophagy promotes tumour progression Using a Drosophila model of tumorigenesis, Tor Erik Rusten and colleagues show that tumou...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2017-01, Vol.541 (7637), p.417-420 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 420 |
---|---|
container_issue | 7637 |
container_start_page | 417 |
container_title | Nature (London) |
container_volume | 541 |
creator | Katheder, Nadja S. Khezri, Rojyar O’Farrell, Fergal Schultz, Sebastian W. Jain, Ashish Rahman, Mohammed M. Schink, Kay O. Theodossiou, Theodossis A. Johansen, Terje Juhász, Gábor Bilder, David Brech, Andreas Stenmark, Harald Rusten, Tor Erik |
description | During early-stage tumour growth in Drosphila, tumour cells acquire necessary nutrients by triggering autophagy in surrounding cells in the tumour microenvironment.
Induced autophagy promotes tumour progression
Using a
Drosophila
model of tumorigenesis, Tor Erik Rusten and colleagues show that tumour cells under stress induce autophagy in their microenvironment, by oncogene and inflammatory signalling, as a way of generating nutrients for tumour growth and dissemination. These findings illustrate the importance of tumour-environmental crosstalk and shed light on the potential of systemic autophagy as a targetable process in cancer.
As malignant tumours develop, they interact intimately with their microenvironment and can activate autophagy
1
, a catabolic process which provides nutrients during starvation. How tumours regulate autophagy
in vivo
and whether autophagy affects tumour growth is controversial
2
. Here we demonstrate, using a well characterized
Drosophila melanogaster
malignant tumour model
3
,
4
, that non-cell-autonomous autophagy is induced both in the tumour microenvironment and systemically in distant tissues. Tumour growth can be pharmacologically restrained using autophagy inhibitors, and early-stage tumour growth and invasion are genetically dependent on autophagy within the local tumour microenvironment. Induction of autophagy is mediated by
Drosophila
tumour necrosis factor and interleukin-6-like signalling from metabolically stressed tumour cells, whereas tumour growth depends on active amino acid transport. We show that dormant growth-impaired tumours from autophagy-deficient animals reactivate tumorous growth when transplanted into autophagy-proficient hosts. We conclude that transformed cells engage surrounding normal cells as active and essential microenvironmental contributors to early tumour growth through nutrient-generating autophagy. |
doi_str_mv | 10.1038/nature20815 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5612666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478132399</galeid><sourcerecordid>A478132399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-e011d287915e9674827575a6a6f2c36d951e9465fbc2820529123671e60597843</originalsourceid><addsrcrecordid>eNpt0t1r1TAYB-AgijubXnkvB71RtDNJ83kjjOHHYCL4cR2ynrc9GW3SJenc_nszzhw9UnoRaJ78krx5EXpB8DHBtfrgbZ4iUKwIf4RWhElRMaHkY7TCmKoKq1ocoMOULjHGnEj2FB1QhaVUUqxQ_c01MYC_djH4AXy2_dpOOYxb292uxxiGkCGt8zSEKa67GP7k7TP0pLV9guf34xH6_fnTr9Ov1fn3L2enJ-dVIwjNFWBCNlRJTThoIZmikktuhRUtbWqx0ZyAZoK3Fw1VFHOqCa2FJCAw11Kx-gh93OWO08UAm6acLtrejNENNt6aYJ3Zn_Fua7pwbXjZXwhRAt7cB8RwNUHKZnCpgb63HsKUDFFcEcwoU4W-_o9elgv7cr2iBCmV1GKmOtuDcb4NZd_mLtScMKlITWuti6oWVAceyiGDh9aV33v-1YJvRndl5uh4AZVvA4NrFlPf7i0oJsNN7uyUkjn7-WPfvtvZ0gspRWgfikywuWsyM2uyol_O3-XB_uuqAt7vQCpTvoM4K-ZC3l-6T9f_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861002968</pqid></control><display><type>article</type><title>Microenvironmental autophagy promotes tumour growth</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Katheder, Nadja S. ; Khezri, Rojyar ; O’Farrell, Fergal ; Schultz, Sebastian W. ; Jain, Ashish ; Rahman, Mohammed M. ; Schink, Kay O. ; Theodossiou, Theodossis A. ; Johansen, Terje ; Juhász, Gábor ; Bilder, David ; Brech, Andreas ; Stenmark, Harald ; Rusten, Tor Erik</creator><creatorcontrib>Katheder, Nadja S. ; Khezri, Rojyar ; O’Farrell, Fergal ; Schultz, Sebastian W. ; Jain, Ashish ; Rahman, Mohammed M. ; Schink, Kay O. ; Theodossiou, Theodossis A. ; Johansen, Terje ; Juhász, Gábor ; Bilder, David ; Brech, Andreas ; Stenmark, Harald ; Rusten, Tor Erik</creatorcontrib><description>During early-stage tumour growth in Drosphila, tumour cells acquire necessary nutrients by triggering autophagy in surrounding cells in the tumour microenvironment.
Induced autophagy promotes tumour progression
Using a
Drosophila
model of tumorigenesis, Tor Erik Rusten and colleagues show that tumour cells under stress induce autophagy in their microenvironment, by oncogene and inflammatory signalling, as a way of generating nutrients for tumour growth and dissemination. These findings illustrate the importance of tumour-environmental crosstalk and shed light on the potential of systemic autophagy as a targetable process in cancer.
As malignant tumours develop, they interact intimately with their microenvironment and can activate autophagy
1
, a catabolic process which provides nutrients during starvation. How tumours regulate autophagy
in vivo
and whether autophagy affects tumour growth is controversial
2
. Here we demonstrate, using a well characterized
Drosophila melanogaster
malignant tumour model
3
,
4
, that non-cell-autonomous autophagy is induced both in the tumour microenvironment and systemically in distant tissues. Tumour growth can be pharmacologically restrained using autophagy inhibitors, and early-stage tumour growth and invasion are genetically dependent on autophagy within the local tumour microenvironment. Induction of autophagy is mediated by
Drosophila
tumour necrosis factor and interleukin-6-like signalling from metabolically stressed tumour cells, whereas tumour growth depends on active amino acid transport. We show that dormant growth-impaired tumours from autophagy-deficient animals reactivate tumorous growth when transplanted into autophagy-proficient hosts. We conclude that transformed cells engage surrounding normal cells as active and essential microenvironmental contributors to early tumour growth through nutrient-generating autophagy.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature20815</identifier><identifier>PMID: 28077876</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/67/327 ; 631/67/70 ; 631/80/39/2346 ; 631/80/83 ; Amino acids ; Amino Acids - metabolism ; Analysis ; Animals ; Autophagy ; Autophagy (Cytology) ; Autophagy - drug effects ; Autophagy - genetics ; Biological Transport ; Cell growth ; Cell Proliferation ; Disease Models, Animal ; Drosophila ; Drosophila melanogaster - cytology ; Drosophila melanogaster - drug effects ; Drosophila melanogaster - metabolism ; Drosophila Proteins - deficiency ; Drosophila Proteins - genetics ; Female ; Health aspects ; Humanities and Social Sciences ; Insects ; Interleukin-6 - metabolism ; letter ; Models, Biological ; multidisciplinary ; Neoplasm Invasiveness ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; Nutrients ; Reactive Oxygen Species - metabolism ; Science ; Signal Transduction ; Tumor Microenvironment ; Tumor Necrosis Factor-alpha - metabolism ; Tumor Suppressor Proteins - deficiency ; Tumor Suppressor Proteins - genetics ; Tumors</subject><ispartof>Nature (London), 2017-01, Vol.541 (7637), p.417-420</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 19, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-e011d287915e9674827575a6a6f2c36d951e9465fbc2820529123671e60597843</citedby><cites>FETCH-LOGICAL-c612t-e011d287915e9674827575a6a6f2c36d951e9465fbc2820529123671e60597843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature20815$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature20815$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28077876$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Katheder, Nadja S.</creatorcontrib><creatorcontrib>Khezri, Rojyar</creatorcontrib><creatorcontrib>O’Farrell, Fergal</creatorcontrib><creatorcontrib>Schultz, Sebastian W.</creatorcontrib><creatorcontrib>Jain, Ashish</creatorcontrib><creatorcontrib>Rahman, Mohammed M.</creatorcontrib><creatorcontrib>Schink, Kay O.</creatorcontrib><creatorcontrib>Theodossiou, Theodossis A.</creatorcontrib><creatorcontrib>Johansen, Terje</creatorcontrib><creatorcontrib>Juhász, Gábor</creatorcontrib><creatorcontrib>Bilder, David</creatorcontrib><creatorcontrib>Brech, Andreas</creatorcontrib><creatorcontrib>Stenmark, Harald</creatorcontrib><creatorcontrib>Rusten, Tor Erik</creatorcontrib><title>Microenvironmental autophagy promotes tumour growth</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>During early-stage tumour growth in Drosphila, tumour cells acquire necessary nutrients by triggering autophagy in surrounding cells in the tumour microenvironment.
Induced autophagy promotes tumour progression
Using a
Drosophila
model of tumorigenesis, Tor Erik Rusten and colleagues show that tumour cells under stress induce autophagy in their microenvironment, by oncogene and inflammatory signalling, as a way of generating nutrients for tumour growth and dissemination. These findings illustrate the importance of tumour-environmental crosstalk and shed light on the potential of systemic autophagy as a targetable process in cancer.
As malignant tumours develop, they interact intimately with their microenvironment and can activate autophagy
1
, a catabolic process which provides nutrients during starvation. How tumours regulate autophagy
in vivo
and whether autophagy affects tumour growth is controversial
2
. Here we demonstrate, using a well characterized
Drosophila melanogaster
malignant tumour model
3
,
4
, that non-cell-autonomous autophagy is induced both in the tumour microenvironment and systemically in distant tissues. Tumour growth can be pharmacologically restrained using autophagy inhibitors, and early-stage tumour growth and invasion are genetically dependent on autophagy within the local tumour microenvironment. Induction of autophagy is mediated by
Drosophila
tumour necrosis factor and interleukin-6-like signalling from metabolically stressed tumour cells, whereas tumour growth depends on active amino acid transport. We show that dormant growth-impaired tumours from autophagy-deficient animals reactivate tumorous growth when transplanted into autophagy-proficient hosts. We conclude that transformed cells engage surrounding normal cells as active and essential microenvironmental contributors to early tumour growth through nutrient-generating autophagy.</description><subject>631/67/327</subject><subject>631/67/70</subject><subject>631/80/39/2346</subject><subject>631/80/83</subject><subject>Amino acids</subject><subject>Amino Acids - metabolism</subject><subject>Analysis</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy (Cytology)</subject><subject>Autophagy - drug effects</subject><subject>Autophagy - genetics</subject><subject>Biological Transport</subject><subject>Cell growth</subject><subject>Cell Proliferation</subject><subject>Disease Models, Animal</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - cytology</subject><subject>Drosophila melanogaster - drug effects</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - deficiency</subject><subject>Drosophila Proteins - genetics</subject><subject>Female</subject><subject>Health aspects</subject><subject>Humanities and Social Sciences</subject><subject>Insects</subject><subject>Interleukin-6 - metabolism</subject><subject>letter</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Neoplasm Invasiveness</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Nutrients</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Science</subject><subject>Signal Transduction</subject><subject>Tumor Microenvironment</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumor Suppressor Proteins - deficiency</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0t1r1TAYB-AgijubXnkvB71RtDNJ83kjjOHHYCL4cR2ynrc9GW3SJenc_nszzhw9UnoRaJ78krx5EXpB8DHBtfrgbZ4iUKwIf4RWhElRMaHkY7TCmKoKq1ocoMOULjHGnEj2FB1QhaVUUqxQ_c01MYC_djH4AXy2_dpOOYxb292uxxiGkCGt8zSEKa67GP7k7TP0pLV9guf34xH6_fnTr9Ov1fn3L2enJ-dVIwjNFWBCNlRJTThoIZmikktuhRUtbWqx0ZyAZoK3Fw1VFHOqCa2FJCAw11Kx-gh93OWO08UAm6acLtrejNENNt6aYJ3Zn_Fua7pwbXjZXwhRAt7cB8RwNUHKZnCpgb63HsKUDFFcEcwoU4W-_o9elgv7cr2iBCmV1GKmOtuDcb4NZd_mLtScMKlITWuti6oWVAceyiGDh9aV33v-1YJvRndl5uh4AZVvA4NrFlPf7i0oJsNN7uyUkjn7-WPfvtvZ0gspRWgfikywuWsyM2uyol_O3-XB_uuqAt7vQCpTvoM4K-ZC3l-6T9f_</recordid><startdate>20170119</startdate><enddate>20170119</enddate><creator>Katheder, Nadja S.</creator><creator>Khezri, Rojyar</creator><creator>O’Farrell, Fergal</creator><creator>Schultz, Sebastian W.</creator><creator>Jain, Ashish</creator><creator>Rahman, Mohammed M.</creator><creator>Schink, Kay O.</creator><creator>Theodossiou, Theodossis A.</creator><creator>Johansen, Terje</creator><creator>Juhász, Gábor</creator><creator>Bilder, David</creator><creator>Brech, Andreas</creator><creator>Stenmark, Harald</creator><creator>Rusten, Tor Erik</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170119</creationdate><title>Microenvironmental autophagy promotes tumour growth</title><author>Katheder, Nadja S. ; Khezri, Rojyar ; O’Farrell, Fergal ; Schultz, Sebastian W. ; Jain, Ashish ; Rahman, Mohammed M. ; Schink, Kay O. ; Theodossiou, Theodossis A. ; Johansen, Terje ; Juhász, Gábor ; Bilder, David ; Brech, Andreas ; Stenmark, Harald ; Rusten, Tor Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-e011d287915e9674827575a6a6f2c36d951e9465fbc2820529123671e60597843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/67/327</topic><topic>631/67/70</topic><topic>631/80/39/2346</topic><topic>631/80/83</topic><topic>Amino acids</topic><topic>Amino Acids - metabolism</topic><topic>Analysis</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy (Cytology)</topic><topic>Autophagy - drug effects</topic><topic>Autophagy - genetics</topic><topic>Biological Transport</topic><topic>Cell growth</topic><topic>Cell Proliferation</topic><topic>Disease Models, Animal</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - cytology</topic><topic>Drosophila melanogaster - drug effects</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - deficiency</topic><topic>Drosophila Proteins - genetics</topic><topic>Female</topic><topic>Health aspects</topic><topic>Humanities and Social Sciences</topic><topic>Insects</topic><topic>Interleukin-6 - metabolism</topic><topic>letter</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Neoplasm Invasiveness</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Nutrients</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Science</topic><topic>Signal Transduction</topic><topic>Tumor Microenvironment</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumor Suppressor Proteins - deficiency</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katheder, Nadja S.</creatorcontrib><creatorcontrib>Khezri, Rojyar</creatorcontrib><creatorcontrib>O’Farrell, Fergal</creatorcontrib><creatorcontrib>Schultz, Sebastian W.</creatorcontrib><creatorcontrib>Jain, Ashish</creatorcontrib><creatorcontrib>Rahman, Mohammed M.</creatorcontrib><creatorcontrib>Schink, Kay O.</creatorcontrib><creatorcontrib>Theodossiou, Theodossis A.</creatorcontrib><creatorcontrib>Johansen, Terje</creatorcontrib><creatorcontrib>Juhász, Gábor</creatorcontrib><creatorcontrib>Bilder, David</creatorcontrib><creatorcontrib>Brech, Andreas</creatorcontrib><creatorcontrib>Stenmark, Harald</creatorcontrib><creatorcontrib>Rusten, Tor Erik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katheder, Nadja S.</au><au>Khezri, Rojyar</au><au>O’Farrell, Fergal</au><au>Schultz, Sebastian W.</au><au>Jain, Ashish</au><au>Rahman, Mohammed M.</au><au>Schink, Kay O.</au><au>Theodossiou, Theodossis A.</au><au>Johansen, Terje</au><au>Juhász, Gábor</au><au>Bilder, David</au><au>Brech, Andreas</au><au>Stenmark, Harald</au><au>Rusten, Tor Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microenvironmental autophagy promotes tumour growth</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2017-01-19</date><risdate>2017</risdate><volume>541</volume><issue>7637</issue><spage>417</spage><epage>420</epage><pages>417-420</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>During early-stage tumour growth in Drosphila, tumour cells acquire necessary nutrients by triggering autophagy in surrounding cells in the tumour microenvironment.
Induced autophagy promotes tumour progression
Using a
Drosophila
model of tumorigenesis, Tor Erik Rusten and colleagues show that tumour cells under stress induce autophagy in their microenvironment, by oncogene and inflammatory signalling, as a way of generating nutrients for tumour growth and dissemination. These findings illustrate the importance of tumour-environmental crosstalk and shed light on the potential of systemic autophagy as a targetable process in cancer.
As malignant tumours develop, they interact intimately with their microenvironment and can activate autophagy
1
, a catabolic process which provides nutrients during starvation. How tumours regulate autophagy
in vivo
and whether autophagy affects tumour growth is controversial
2
. Here we demonstrate, using a well characterized
Drosophila melanogaster
malignant tumour model
3
,
4
, that non-cell-autonomous autophagy is induced both in the tumour microenvironment and systemically in distant tissues. Tumour growth can be pharmacologically restrained using autophagy inhibitors, and early-stage tumour growth and invasion are genetically dependent on autophagy within the local tumour microenvironment. Induction of autophagy is mediated by
Drosophila
tumour necrosis factor and interleukin-6-like signalling from metabolically stressed tumour cells, whereas tumour growth depends on active amino acid transport. We show that dormant growth-impaired tumours from autophagy-deficient animals reactivate tumorous growth when transplanted into autophagy-proficient hosts. We conclude that transformed cells engage surrounding normal cells as active and essential microenvironmental contributors to early tumour growth through nutrient-generating autophagy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28077876</pmid><doi>10.1038/nature20815</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2017-01, Vol.541 (7637), p.417-420 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5612666 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/67/327 631/67/70 631/80/39/2346 631/80/83 Amino acids Amino Acids - metabolism Analysis Animals Autophagy Autophagy (Cytology) Autophagy - drug effects Autophagy - genetics Biological Transport Cell growth Cell Proliferation Disease Models, Animal Drosophila Drosophila melanogaster - cytology Drosophila melanogaster - drug effects Drosophila melanogaster - metabolism Drosophila Proteins - deficiency Drosophila Proteins - genetics Female Health aspects Humanities and Social Sciences Insects Interleukin-6 - metabolism letter Models, Biological multidisciplinary Neoplasm Invasiveness Neoplasms - genetics Neoplasms - metabolism Neoplasms - pathology Nutrients Reactive Oxygen Species - metabolism Science Signal Transduction Tumor Microenvironment Tumor Necrosis Factor-alpha - metabolism Tumor Suppressor Proteins - deficiency Tumor Suppressor Proteins - genetics Tumors |
title | Microenvironmental autophagy promotes tumour growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microenvironmental%20autophagy%20promotes%20tumour%20growth&rft.jtitle=Nature%20(London)&rft.au=Katheder,%20Nadja%20S.&rft.date=2017-01-19&rft.volume=541&rft.issue=7637&rft.spage=417&rft.epage=420&rft.pages=417-420&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature20815&rft_dat=%3Cgale_pubme%3EA478132399%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861002968&rft_id=info:pmid/28077876&rft_galeid=A478132399&rfr_iscdi=true |