An in vitro tag-and-modify protein sample generation method for single-molecule fluorescence resonance energy transfer

Biomolecular systems exhibit many dynamic and biologically relevant properties, such as conformational fluctuations, multistep catalysis, transient interactions, folding, and allosteric structural transitions. These properties are challenging to detect and engineer using standard ensemble-based tech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2017-09, Vol.292 (38), p.15636-15648
Hauptverfasser: Hamadani, Kambiz M., Howe, Jesse, Jensen, Madeleine K., Wu, Peng, Cate, Jamie H.D., Marqusee, Susan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15648
container_issue 38
container_start_page 15636
container_title The Journal of biological chemistry
container_volume 292
creator Hamadani, Kambiz M.
Howe, Jesse
Jensen, Madeleine K.
Wu, Peng
Cate, Jamie H.D.
Marqusee, Susan
description Biomolecular systems exhibit many dynamic and biologically relevant properties, such as conformational fluctuations, multistep catalysis, transient interactions, folding, and allosteric structural transitions. These properties are challenging to detect and engineer using standard ensemble-based techniques. To address this drawback, single-molecule methods offer a way to access conformational distributions, transient states, and asynchronous dynamics inaccessible to these standard techniques. Fluorescence-based single-molecule approaches are parallelizable and compatible with multiplexed detection; to date, however, they have remained limited to serial screens of small protein libraries. This stems from the current absence of methods for generating either individual dual-labeled protein samples at high throughputs or protein libraries compatible with multiplexed screening platforms. Here, we demonstrate that by combining purified and reconstituted in vitro translation, quantitative unnatural amino acid incorporation via AUG codon reassignment, and copper-catalyzed azide-alkyne cycloaddition, we can overcome these challenges for target proteins that are, or can be, methionine-depleted. We present an in vitro parallelizable approach that does not require laborious target-specific purification to generate dual-labeled proteins and ribosome-nascent chain libraries suitable for single-molecule FRET-based conformational phenotyping. We demonstrate the power of this approach by tracking the effects of mutations, C-terminal extensions, and ribosomal tethering on the structure and stability of three protein model systems: barnase, spectrin, and T4 lysozyme. Importantly, dual-labeled ribosome-nascent chain libraries enable single-molecule co-localization of genotypes with phenotypes, are well suited for multiplexed single-molecule screening of protein libraries, and should enable the in vitro directed evolution of proteins with designer single-molecule conformational phenotypes of interest.
doi_str_mv 10.1074/jbc.M117.791723
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5612098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820340333</els_id><sourcerecordid>1924596990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-94ee1717ac4305e275d9a1dd89460a5ca7c7b033308e3ee815a4a67c0b778d923</originalsourceid><addsrcrecordid>eNp1kc1r3DAQxUVpaLZpz70VHXvxRl-2rEshhPQDUnJJoDehlcaOgi1tJXlh__vKbBraQ3XRwPzm6WkeQh8o2VIixeXTzm5_UCq3UlHJ-Cu0oaTnDW_pz9doQwijjWJtf47e5vxE6hGKvkHnrJet6BTboMNVwD7ggy8p4mLGxgTXzNH54Yj3KRaozWzm_QR4hADJFB8DnqE8RoeHmHD2YZygjkxgl0oN0xITZAvBAq5FDGat1tnxiEsyIQ-Q3qGzwUwZ3j_fF-jhy8399bfm9u7r9-ur28YKwUujBACVVBorOGmBydYpQ53rleiIaa2RVu4I55z0wAF62hphOmnJTsreKcYv0OeT7n7ZzeCqq-pg0vvkZ5OOOhqv_-0E_6jHeNBtRxlRfRX49CyQ4q8FctGzr5-bJhMgLllTxUSrOqVIRS9PqE0x5wTDyzOU6DUtXdPSa1r6lFad-Pi3uxf-TzwVUCcA6o4OHpLO1q-bdT6BLdpF_1_x3xa9p2k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924596990</pqid></control><display><type>article</type><title>An in vitro tag-and-modify protein sample generation method for single-molecule fluorescence resonance energy transfer</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hamadani, Kambiz M. ; Howe, Jesse ; Jensen, Madeleine K. ; Wu, Peng ; Cate, Jamie H.D. ; Marqusee, Susan</creator><creatorcontrib>Hamadani, Kambiz M. ; Howe, Jesse ; Jensen, Madeleine K. ; Wu, Peng ; Cate, Jamie H.D. ; Marqusee, Susan</creatorcontrib><description>Biomolecular systems exhibit many dynamic and biologically relevant properties, such as conformational fluctuations, multistep catalysis, transient interactions, folding, and allosteric structural transitions. These properties are challenging to detect and engineer using standard ensemble-based techniques. To address this drawback, single-molecule methods offer a way to access conformational distributions, transient states, and asynchronous dynamics inaccessible to these standard techniques. Fluorescence-based single-molecule approaches are parallelizable and compatible with multiplexed detection; to date, however, they have remained limited to serial screens of small protein libraries. This stems from the current absence of methods for generating either individual dual-labeled protein samples at high throughputs or protein libraries compatible with multiplexed screening platforms. Here, we demonstrate that by combining purified and reconstituted in vitro translation, quantitative unnatural amino acid incorporation via AUG codon reassignment, and copper-catalyzed azide-alkyne cycloaddition, we can overcome these challenges for target proteins that are, or can be, methionine-depleted. We present an in vitro parallelizable approach that does not require laborious target-specific purification to generate dual-labeled proteins and ribosome-nascent chain libraries suitable for single-molecule FRET-based conformational phenotyping. We demonstrate the power of this approach by tracking the effects of mutations, C-terminal extensions, and ribosomal tethering on the structure and stability of three protein model systems: barnase, spectrin, and T4 lysozyme. Importantly, dual-labeled ribosome-nascent chain libraries enable single-molecule co-localization of genotypes with phenotypes, are well suited for multiplexed single-molecule screening of protein libraries, and should enable the in vitro directed evolution of proteins with designer single-molecule conformational phenotypes of interest.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M117.791723</identifier><identifier>PMID: 28754692</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alkynes - chemistry ; Azides - chemistry ; bioconjugation ; Catalysis ; click chemistry ; Copper - chemistry ; Cycloaddition Reaction ; directed evolution ; Fluorescence Resonance Energy Transfer ; fluorescence resonance energy transfer (FRET) ; high-throughput screening (HTS) ; in vitro translation ; Molecular Biophysics ; Protein Folding ; Proteins - chemistry ; ribosome display ; single-molecule biophysics ; unnatural amino acid incorporation</subject><ispartof>The Journal of biological chemistry, 2017-09, Vol.292 (38), p.15636-15648</ispartof><rights>2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-94ee1717ac4305e275d9a1dd89460a5ca7c7b033308e3ee815a4a67c0b778d923</citedby><cites>FETCH-LOGICAL-c443t-94ee1717ac4305e275d9a1dd89460a5ca7c7b033308e3ee815a4a67c0b778d923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5612098/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5612098/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28754692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamadani, Kambiz M.</creatorcontrib><creatorcontrib>Howe, Jesse</creatorcontrib><creatorcontrib>Jensen, Madeleine K.</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Cate, Jamie H.D.</creatorcontrib><creatorcontrib>Marqusee, Susan</creatorcontrib><title>An in vitro tag-and-modify protein sample generation method for single-molecule fluorescence resonance energy transfer</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Biomolecular systems exhibit many dynamic and biologically relevant properties, such as conformational fluctuations, multistep catalysis, transient interactions, folding, and allosteric structural transitions. These properties are challenging to detect and engineer using standard ensemble-based techniques. To address this drawback, single-molecule methods offer a way to access conformational distributions, transient states, and asynchronous dynamics inaccessible to these standard techniques. Fluorescence-based single-molecule approaches are parallelizable and compatible with multiplexed detection; to date, however, they have remained limited to serial screens of small protein libraries. This stems from the current absence of methods for generating either individual dual-labeled protein samples at high throughputs or protein libraries compatible with multiplexed screening platforms. Here, we demonstrate that by combining purified and reconstituted in vitro translation, quantitative unnatural amino acid incorporation via AUG codon reassignment, and copper-catalyzed azide-alkyne cycloaddition, we can overcome these challenges for target proteins that are, or can be, methionine-depleted. We present an in vitro parallelizable approach that does not require laborious target-specific purification to generate dual-labeled proteins and ribosome-nascent chain libraries suitable for single-molecule FRET-based conformational phenotyping. We demonstrate the power of this approach by tracking the effects of mutations, C-terminal extensions, and ribosomal tethering on the structure and stability of three protein model systems: barnase, spectrin, and T4 lysozyme. Importantly, dual-labeled ribosome-nascent chain libraries enable single-molecule co-localization of genotypes with phenotypes, are well suited for multiplexed single-molecule screening of protein libraries, and should enable the in vitro directed evolution of proteins with designer single-molecule conformational phenotypes of interest.</description><subject>Alkynes - chemistry</subject><subject>Azides - chemistry</subject><subject>bioconjugation</subject><subject>Catalysis</subject><subject>click chemistry</subject><subject>Copper - chemistry</subject><subject>Cycloaddition Reaction</subject><subject>directed evolution</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>fluorescence resonance energy transfer (FRET)</subject><subject>high-throughput screening (HTS)</subject><subject>in vitro translation</subject><subject>Molecular Biophysics</subject><subject>Protein Folding</subject><subject>Proteins - chemistry</subject><subject>ribosome display</subject><subject>single-molecule biophysics</subject><subject>unnatural amino acid incorporation</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1r3DAQxUVpaLZpz70VHXvxRl-2rEshhPQDUnJJoDehlcaOgi1tJXlh__vKbBraQ3XRwPzm6WkeQh8o2VIixeXTzm5_UCq3UlHJ-Cu0oaTnDW_pz9doQwijjWJtf47e5vxE6hGKvkHnrJet6BTboMNVwD7ggy8p4mLGxgTXzNH54Yj3KRaozWzm_QR4hADJFB8DnqE8RoeHmHD2YZygjkxgl0oN0xITZAvBAq5FDGat1tnxiEsyIQ-Q3qGzwUwZ3j_fF-jhy8399bfm9u7r9-ur28YKwUujBACVVBorOGmBydYpQ53rleiIaa2RVu4I55z0wAF62hphOmnJTsreKcYv0OeT7n7ZzeCqq-pg0vvkZ5OOOhqv_-0E_6jHeNBtRxlRfRX49CyQ4q8FctGzr5-bJhMgLllTxUSrOqVIRS9PqE0x5wTDyzOU6DUtXdPSa1r6lFad-Pi3uxf-TzwVUCcA6o4OHpLO1q-bdT6BLdpF_1_x3xa9p2k</recordid><startdate>20170922</startdate><enddate>20170922</enddate><creator>Hamadani, Kambiz M.</creator><creator>Howe, Jesse</creator><creator>Jensen, Madeleine K.</creator><creator>Wu, Peng</creator><creator>Cate, Jamie H.D.</creator><creator>Marqusee, Susan</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170922</creationdate><title>An in vitro tag-and-modify protein sample generation method for single-molecule fluorescence resonance energy transfer</title><author>Hamadani, Kambiz M. ; Howe, Jesse ; Jensen, Madeleine K. ; Wu, Peng ; Cate, Jamie H.D. ; Marqusee, Susan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-94ee1717ac4305e275d9a1dd89460a5ca7c7b033308e3ee815a4a67c0b778d923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alkynes - chemistry</topic><topic>Azides - chemistry</topic><topic>bioconjugation</topic><topic>Catalysis</topic><topic>click chemistry</topic><topic>Copper - chemistry</topic><topic>Cycloaddition Reaction</topic><topic>directed evolution</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>fluorescence resonance energy transfer (FRET)</topic><topic>high-throughput screening (HTS)</topic><topic>in vitro translation</topic><topic>Molecular Biophysics</topic><topic>Protein Folding</topic><topic>Proteins - chemistry</topic><topic>ribosome display</topic><topic>single-molecule biophysics</topic><topic>unnatural amino acid incorporation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamadani, Kambiz M.</creatorcontrib><creatorcontrib>Howe, Jesse</creatorcontrib><creatorcontrib>Jensen, Madeleine K.</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Cate, Jamie H.D.</creatorcontrib><creatorcontrib>Marqusee, Susan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamadani, Kambiz M.</au><au>Howe, Jesse</au><au>Jensen, Madeleine K.</au><au>Wu, Peng</au><au>Cate, Jamie H.D.</au><au>Marqusee, Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An in vitro tag-and-modify protein sample generation method for single-molecule fluorescence resonance energy transfer</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2017-09-22</date><risdate>2017</risdate><volume>292</volume><issue>38</issue><spage>15636</spage><epage>15648</epage><pages>15636-15648</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Biomolecular systems exhibit many dynamic and biologically relevant properties, such as conformational fluctuations, multistep catalysis, transient interactions, folding, and allosteric structural transitions. These properties are challenging to detect and engineer using standard ensemble-based techniques. To address this drawback, single-molecule methods offer a way to access conformational distributions, transient states, and asynchronous dynamics inaccessible to these standard techniques. Fluorescence-based single-molecule approaches are parallelizable and compatible with multiplexed detection; to date, however, they have remained limited to serial screens of small protein libraries. This stems from the current absence of methods for generating either individual dual-labeled protein samples at high throughputs or protein libraries compatible with multiplexed screening platforms. Here, we demonstrate that by combining purified and reconstituted in vitro translation, quantitative unnatural amino acid incorporation via AUG codon reassignment, and copper-catalyzed azide-alkyne cycloaddition, we can overcome these challenges for target proteins that are, or can be, methionine-depleted. We present an in vitro parallelizable approach that does not require laborious target-specific purification to generate dual-labeled proteins and ribosome-nascent chain libraries suitable for single-molecule FRET-based conformational phenotyping. We demonstrate the power of this approach by tracking the effects of mutations, C-terminal extensions, and ribosomal tethering on the structure and stability of three protein model systems: barnase, spectrin, and T4 lysozyme. Importantly, dual-labeled ribosome-nascent chain libraries enable single-molecule co-localization of genotypes with phenotypes, are well suited for multiplexed single-molecule screening of protein libraries, and should enable the in vitro directed evolution of proteins with designer single-molecule conformational phenotypes of interest.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28754692</pmid><doi>10.1074/jbc.M117.791723</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2017-09, Vol.292 (38), p.15636-15648
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5612098
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Alkynes - chemistry
Azides - chemistry
bioconjugation
Catalysis
click chemistry
Copper - chemistry
Cycloaddition Reaction
directed evolution
Fluorescence Resonance Energy Transfer
fluorescence resonance energy transfer (FRET)
high-throughput screening (HTS)
in vitro translation
Molecular Biophysics
Protein Folding
Proteins - chemistry
ribosome display
single-molecule biophysics
unnatural amino acid incorporation
title An in vitro tag-and-modify protein sample generation method for single-molecule fluorescence resonance energy transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20in%20vitro%20tag-and-modify%20protein%20sample%20generation%20method%20for%20single-molecule%20fluorescence%20resonance%20energy%20transfer&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Hamadani,%20Kambiz%20M.&rft.date=2017-09-22&rft.volume=292&rft.issue=38&rft.spage=15636&rft.epage=15648&rft.pages=15636-15648&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M117.791723&rft_dat=%3Cproquest_pubme%3E1924596990%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924596990&rft_id=info:pmid/28754692&rft_els_id=S0021925820340333&rfr_iscdi=true