Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo

A mechanistic understanding of neural computation requires determining how information is processed as it passes through neurons and across synapses. However, it has been challenging to measure membrane potential changes in axons and dendrites in vivo. We use in vivo, two-photon imaging of novel gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2016-06, Vol.166 (1), p.245-257
Hauptverfasser: Yang, Helen H., St-Pierre, François, Sun, Xulu, Ding, Xiaozhe, Lin, Michael Z., Clandinin, Thomas R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue 1
container_start_page 245
container_title Cell
container_volume 166
creator Yang, Helen H.
St-Pierre, François
Sun, Xulu
Ding, Xiaozhe
Lin, Michael Z.
Clandinin, Thomas R.
description A mechanistic understanding of neural computation requires determining how information is processed as it passes through neurons and across synapses. However, it has been challenging to measure membrane potential changes in axons and dendrites in vivo. We use in vivo, two-photon imaging of novel genetically encoded voltage indicators, as well as calcium imaging, to measure sensory stimulus-evoked signals in the Drosophila visual system with subcellular resolution. Across synapses, we find major transformations in the kinetics, amplitude, and sign of voltage responses to light. We also describe distinct relationships between voltage and calcium signals in different neuronal compartments, a substrate for local computation. Finally, we demonstrate that ON and OFF selectivity, a key feature of visual processing across species, emerges through the transformation of membrane potential into intracellular calcium concentration. By imaging voltage and calcium signals to map information flow with subcellular resolution, we illuminate where and how critical computations arise. [Display omitted] •In vivo, two-photon imaging of novel genetically encoded voltage indicators•Observing sensory stimulus-evoked voltage signals with subcellular resolution•Calcium signals, unlike voltage signals, are compartmentalized within a neuron•ON and OFF selectivity arises in the transformation between voltage and calcium Observation of subcellular changes in membrane potential and calcium concentration using two-photon imaging of genetically encoded indicators illuminates neuronal computations in vivo, including the origin of ON and OFF selectivity.
doi_str_mv 10.1016/j.cell.2016.05.031
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5606228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867416305827</els_id><sourcerecordid>1811890948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-41f0e47cf912de2a9ac994bdf004ab19045c7378791a7e73881399a680ab405c3</originalsourceid><addsrcrecordid>eNqNkcFu1DAURS1ERYfCD7BAWbKZ8Ow4sS0hJDQqdKSKIkq7tRznJXiUxMVORuJv-i39sjqaUsEGWD1LPvfqvXsJeUUhp0Crt7vcYt_nLL1zKHMo6BOyoqDEmlPBnpIVgGJrWQl-TJ7HuAMAWZblM3LMBKt4BWJFri7nenGZexOy7WA6N3aZb7Nr30-mw8yMTbYxvXXzkF26bjR9zL7iHpf5Gedg-uxL8BZjXITb8e722u39C3LUJgJfPswTcvXx9NvmbH1-8Wm7-XC-tqUUU1qzBeTCtoqyBplRxirF66YF4KamCnhpRSGkUNQIFIWUtFDKVBJMzaG0xQl5f_C9mesBG4vjlDbSN8ENJvzU3jj958_ovuvO73VZQcWYTAZvHgyC_zFjnPTg4pKHGdHPUbOUGSt4Rf-NUkmpVKD4_6BAecEVowllB9QGH2PA9nF5CnppWe_0otRLyxpKnVpOote_n_0o-VVrAt4dAEzh7x0GHa3D0WLjAtpJN979zf8eWFi4yA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1801434921</pqid></control><display><type>article</type><title>Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Helen H. ; St-Pierre, François ; Sun, Xulu ; Ding, Xiaozhe ; Lin, Michael Z. ; Clandinin, Thomas R.</creator><creatorcontrib>Yang, Helen H. ; St-Pierre, François ; Sun, Xulu ; Ding, Xiaozhe ; Lin, Michael Z. ; Clandinin, Thomas R.</creatorcontrib><description>A mechanistic understanding of neural computation requires determining how information is processed as it passes through neurons and across synapses. However, it has been challenging to measure membrane potential changes in axons and dendrites in vivo. We use in vivo, two-photon imaging of novel genetically encoded voltage indicators, as well as calcium imaging, to measure sensory stimulus-evoked signals in the Drosophila visual system with subcellular resolution. Across synapses, we find major transformations in the kinetics, amplitude, and sign of voltage responses to light. We also describe distinct relationships between voltage and calcium signals in different neuronal compartments, a substrate for local computation. Finally, we demonstrate that ON and OFF selectivity, a key feature of visual processing across species, emerges through the transformation of membrane potential into intracellular calcium concentration. By imaging voltage and calcium signals to map information flow with subcellular resolution, we illuminate where and how critical computations arise. [Display omitted] •In vivo, two-photon imaging of novel genetically encoded voltage indicators•Observing sensory stimulus-evoked voltage signals with subcellular resolution•Calcium signals, unlike voltage signals, are compartmentalized within a neuron•ON and OFF selectivity arises in the transformation between voltage and calcium Observation of subcellular changes in membrane potential and calcium concentration using two-photon imaging of genetically encoded indicators illuminates neuronal computations in vivo, including the origin of ON and OFF selectivity.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2016.05.031</identifier><identifier>PMID: 27264607</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; axons ; calcium ; Calcium - metabolism ; calcium signaling ; dendrites ; Drosophila ; Drosophila - physiology ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Female ; image analysis ; Kinetics ; membrane potential ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurites - metabolism ; Neurons - metabolism ; synapse ; Visual Pathways</subject><ispartof>Cell, 2016-06, Vol.166 (1), p.245-257</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-41f0e47cf912de2a9ac994bdf004ab19045c7378791a7e73881399a680ab405c3</citedby><cites>FETCH-LOGICAL-c587t-41f0e47cf912de2a9ac994bdf004ab19045c7378791a7e73881399a680ab405c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867416305827$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27264607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Helen H.</creatorcontrib><creatorcontrib>St-Pierre, François</creatorcontrib><creatorcontrib>Sun, Xulu</creatorcontrib><creatorcontrib>Ding, Xiaozhe</creatorcontrib><creatorcontrib>Lin, Michael Z.</creatorcontrib><creatorcontrib>Clandinin, Thomas R.</creatorcontrib><title>Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo</title><title>Cell</title><addtitle>Cell</addtitle><description>A mechanistic understanding of neural computation requires determining how information is processed as it passes through neurons and across synapses. However, it has been challenging to measure membrane potential changes in axons and dendrites in vivo. We use in vivo, two-photon imaging of novel genetically encoded voltage indicators, as well as calcium imaging, to measure sensory stimulus-evoked signals in the Drosophila visual system with subcellular resolution. Across synapses, we find major transformations in the kinetics, amplitude, and sign of voltage responses to light. We also describe distinct relationships between voltage and calcium signals in different neuronal compartments, a substrate for local computation. Finally, we demonstrate that ON and OFF selectivity, a key feature of visual processing across species, emerges through the transformation of membrane potential into intracellular calcium concentration. By imaging voltage and calcium signals to map information flow with subcellular resolution, we illuminate where and how critical computations arise. [Display omitted] •In vivo, two-photon imaging of novel genetically encoded voltage indicators•Observing sensory stimulus-evoked voltage signals with subcellular resolution•Calcium signals, unlike voltage signals, are compartmentalized within a neuron•ON and OFF selectivity arises in the transformation between voltage and calcium Observation of subcellular changes in membrane potential and calcium concentration using two-photon imaging of genetically encoded indicators illuminates neuronal computations in vivo, including the origin of ON and OFF selectivity.</description><subject>Animals</subject><subject>axons</subject><subject>calcium</subject><subject>Calcium - metabolism</subject><subject>calcium signaling</subject><subject>dendrites</subject><subject>Drosophila</subject><subject>Drosophila - physiology</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Female</subject><subject>image analysis</subject><subject>Kinetics</subject><subject>membrane potential</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurites - metabolism</subject><subject>Neurons - metabolism</subject><subject>synapse</subject><subject>Visual Pathways</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAURS1ERYfCD7BAWbKZ8Ow4sS0hJDQqdKSKIkq7tRznJXiUxMVORuJv-i39sjqaUsEGWD1LPvfqvXsJeUUhp0Crt7vcYt_nLL1zKHMo6BOyoqDEmlPBnpIVgGJrWQl-TJ7HuAMAWZblM3LMBKt4BWJFri7nenGZexOy7WA6N3aZb7Nr30-mw8yMTbYxvXXzkF26bjR9zL7iHpf5Gedg-uxL8BZjXITb8e722u39C3LUJgJfPswTcvXx9NvmbH1-8Wm7-XC-tqUUU1qzBeTCtoqyBplRxirF66YF4KamCnhpRSGkUNQIFIWUtFDKVBJMzaG0xQl5f_C9mesBG4vjlDbSN8ENJvzU3jj958_ovuvO73VZQcWYTAZvHgyC_zFjnPTg4pKHGdHPUbOUGSt4Rf-NUkmpVKD4_6BAecEVowllB9QGH2PA9nF5CnppWe_0otRLyxpKnVpOote_n_0o-VVrAt4dAEzh7x0GHa3D0WLjAtpJN979zf8eWFi4yA</recordid><startdate>20160630</startdate><enddate>20160630</enddate><creator>Yang, Helen H.</creator><creator>St-Pierre, François</creator><creator>Sun, Xulu</creator><creator>Ding, Xiaozhe</creator><creator>Lin, Michael Z.</creator><creator>Clandinin, Thomas R.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QP</scope><scope>7TK</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160630</creationdate><title>Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo</title><author>Yang, Helen H. ; St-Pierre, François ; Sun, Xulu ; Ding, Xiaozhe ; Lin, Michael Z. ; Clandinin, Thomas R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-41f0e47cf912de2a9ac994bdf004ab19045c7378791a7e73881399a680ab405c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>axons</topic><topic>calcium</topic><topic>Calcium - metabolism</topic><topic>calcium signaling</topic><topic>dendrites</topic><topic>Drosophila</topic><topic>Drosophila - physiology</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Female</topic><topic>image analysis</topic><topic>Kinetics</topic><topic>membrane potential</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurites - metabolism</topic><topic>Neurons - metabolism</topic><topic>synapse</topic><topic>Visual Pathways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Helen H.</creatorcontrib><creatorcontrib>St-Pierre, François</creatorcontrib><creatorcontrib>Sun, Xulu</creatorcontrib><creatorcontrib>Ding, Xiaozhe</creatorcontrib><creatorcontrib>Lin, Michael Z.</creatorcontrib><creatorcontrib>Clandinin, Thomas R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Helen H.</au><au>St-Pierre, François</au><au>Sun, Xulu</au><au>Ding, Xiaozhe</au><au>Lin, Michael Z.</au><au>Clandinin, Thomas R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2016-06-30</date><risdate>2016</risdate><volume>166</volume><issue>1</issue><spage>245</spage><epage>257</epage><pages>245-257</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>A mechanistic understanding of neural computation requires determining how information is processed as it passes through neurons and across synapses. However, it has been challenging to measure membrane potential changes in axons and dendrites in vivo. We use in vivo, two-photon imaging of novel genetically encoded voltage indicators, as well as calcium imaging, to measure sensory stimulus-evoked signals in the Drosophila visual system with subcellular resolution. Across synapses, we find major transformations in the kinetics, amplitude, and sign of voltage responses to light. We also describe distinct relationships between voltage and calcium signals in different neuronal compartments, a substrate for local computation. Finally, we demonstrate that ON and OFF selectivity, a key feature of visual processing across species, emerges through the transformation of membrane potential into intracellular calcium concentration. By imaging voltage and calcium signals to map information flow with subcellular resolution, we illuminate where and how critical computations arise. [Display omitted] •In vivo, two-photon imaging of novel genetically encoded voltage indicators•Observing sensory stimulus-evoked voltage signals with subcellular resolution•Calcium signals, unlike voltage signals, are compartmentalized within a neuron•ON and OFF selectivity arises in the transformation between voltage and calcium Observation of subcellular changes in membrane potential and calcium concentration using two-photon imaging of genetically encoded indicators illuminates neuronal computations in vivo, including the origin of ON and OFF selectivity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27264607</pmid><doi>10.1016/j.cell.2016.05.031</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2016-06, Vol.166 (1), p.245-257
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5606228
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Animals
axons
calcium
Calcium - metabolism
calcium signaling
dendrites
Drosophila
Drosophila - physiology
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Female
image analysis
Kinetics
membrane potential
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Neurites - metabolism
Neurons - metabolism
synapse
Visual Pathways
title Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subcellular%20Imaging%20of%20Voltage%20and%20Calcium%20Signals%20Reveals%20Neural%20Processing%20In%C2%A0Vivo&rft.jtitle=Cell&rft.au=Yang,%20Helen%C2%A0H.&rft.date=2016-06-30&rft.volume=166&rft.issue=1&rft.spage=245&rft.epage=257&rft.pages=245-257&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2016.05.031&rft_dat=%3Cproquest_pubme%3E1811890948%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1801434921&rft_id=info:pmid/27264607&rft_els_id=S0092867416305827&rfr_iscdi=true