Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells

Conventional DNA bisulfite sequencing has been extended to single cell level, but the coverage consistency is insufficient for parallel comparison. Here we report a novel method for genome-wide CpG island (CGI) methylation sequencing for single cells (scCGI-seq), combining methylation-sensitive rest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2017-06, Vol.45 (10), p.e77-e77
Hauptverfasser: Han, Lin, Wu, Hua-Jun, Zhu, Haiying, Kim, Kun-Yong, Marjani, Sadie L, Riester, Markus, Euskirchen, Ghia, Zi, Xiaoyuan, Yang, Jennifer, Han, Jasper, Snyder, Michael, Park, In-Hyun, Irizarry, Rafael, Weissman, Sherman M, Michor, Franziska, Fan, Rong, Pan, Xinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e77
container_issue 10
container_start_page e77
container_title Nucleic acids research
container_volume 45
creator Han, Lin
Wu, Hua-Jun
Zhu, Haiying
Kim, Kun-Yong
Marjani, Sadie L
Riester, Markus
Euskirchen, Ghia
Zi, Xiaoyuan
Yang, Jennifer
Han, Jasper
Snyder, Michael
Park, In-Hyun
Irizarry, Rafael
Weissman, Sherman M
Michor, Franziska
Fan, Rong
Pan, Xinghua
description Conventional DNA bisulfite sequencing has been extended to single cell level, but the coverage consistency is insufficient for parallel comparison. Here we report a novel method for genome-wide CpG island (CGI) methylation sequencing for single cells (scCGI-seq), combining methylation-sensitive restriction enzyme digestion and multiple displacement amplification for selective detection of methylated CGIs. We applied this method to analyzing single cells from two types of hematopoietic cells, K562 and GM12878 and small populations of fibroblasts and induced pluripotent stem cells. The method detected 21 798 CGIs (76% of all CGIs) per cell, and the number of CGIs consistently detected from all 16 profiled single cells was 20 864 (72.7%), with 12 961 promoters covered. This coverage represents a substantial improvement over results obtained using single cell reduced representation bisulfite sequencing, with a 66-fold increase in the fraction of consistently profiled CGIs across individual cells. Single cells of the same type were more similar to each other than to other types, but also displayed epigenetic heterogeneity. The method was further validated by comparing the CpG methylation pattern, methylation profile of CGIs/promoters and repeat regions and 41 classes of known regulatory markers to the ENCODE data. Although not every minor methylation differences between cells are detectable, scCGI-seq provides a solid tool for unsupervised stratification of a heterogeneous cell population.
doi_str_mv 10.1093/nar/gkx026
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5605247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1862764911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-feb7f6a446f05462dea895a0ab830f499377b83c13f4b956ba30b76432a051193</originalsourceid><addsrcrecordid>eNpVkU9rGzEQxUVJaRy3l36AsMdQ2Eb_Vru6BBKTuIVALu1ZzK5Hjhqt1tlZl_rbR8aJSS8awfvNmxkeY18F_y64VZcJxsv10z8uzQc2E8rIUlsjT9iMK16VguvmlJ0R_eFcaFHpT-xUNkIaK9WMxZtA2-jDhGVIK9xgftJUQIK4o0DF4IvFZlkEipBWRY_T4y7CFIZUYII2IhVrTEOPJXUQsaBpzKoP3YHJ3RTSOgsdxkif2UcPkfDLa52z33e3vxY_yvuH5c_F9X3ZqbqZSo9t7Q1obTyvtJErhMZWwKFtFPfaWlXX-dsJ5XVrK9OC4m1ttJLAKyGsmrOrg-9m2_a46vJFI0S3GUMP484NENz_SgqPbj38dZXhldR1Nrh4NRiH5y3S5PpA-xMg4bAlJxoj80ArREa_HdBuHIhG9Mcxgrt9PC7H4w7xZPj8_WJH9C0P9QKgBI8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862764911</pqid></control><display><type>article</type><title>Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Han, Lin ; Wu, Hua-Jun ; Zhu, Haiying ; Kim, Kun-Yong ; Marjani, Sadie L ; Riester, Markus ; Euskirchen, Ghia ; Zi, Xiaoyuan ; Yang, Jennifer ; Han, Jasper ; Snyder, Michael ; Park, In-Hyun ; Irizarry, Rafael ; Weissman, Sherman M ; Michor, Franziska ; Fan, Rong ; Pan, Xinghua</creator><creatorcontrib>Han, Lin ; Wu, Hua-Jun ; Zhu, Haiying ; Kim, Kun-Yong ; Marjani, Sadie L ; Riester, Markus ; Euskirchen, Ghia ; Zi, Xiaoyuan ; Yang, Jennifer ; Han, Jasper ; Snyder, Michael ; Park, In-Hyun ; Irizarry, Rafael ; Weissman, Sherman M ; Michor, Franziska ; Fan, Rong ; Pan, Xinghua</creatorcontrib><description>Conventional DNA bisulfite sequencing has been extended to single cell level, but the coverage consistency is insufficient for parallel comparison. Here we report a novel method for genome-wide CpG island (CGI) methylation sequencing for single cells (scCGI-seq), combining methylation-sensitive restriction enzyme digestion and multiple displacement amplification for selective detection of methylated CGIs. We applied this method to analyzing single cells from two types of hematopoietic cells, K562 and GM12878 and small populations of fibroblasts and induced pluripotent stem cells. The method detected 21 798 CGIs (76% of all CGIs) per cell, and the number of CGIs consistently detected from all 16 profiled single cells was 20 864 (72.7%), with 12 961 promoters covered. This coverage represents a substantial improvement over results obtained using single cell reduced representation bisulfite sequencing, with a 66-fold increase in the fraction of consistently profiled CGIs across individual cells. Single cells of the same type were more similar to each other than to other types, but also displayed epigenetic heterogeneity. The method was further validated by comparing the CpG methylation pattern, methylation profile of CGIs/promoters and repeat regions and 41 classes of known regulatory markers to the ENCODE data. Although not every minor methylation differences between cells are detectable, scCGI-seq provides a solid tool for unsupervised stratification of a heterogeneous cell population.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkx026</identifier><identifier>PMID: 28126923</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cell Line ; Cell Line, Tumor ; Chromosome Mapping ; CpG Islands ; DNA Methylation ; DNA Restriction Enzymes - chemistry ; Epigenesis, Genetic ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Genetic Variation ; Genome, Human ; High-Throughput Nucleotide Sequencing ; Humans ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; K562 Cells ; Lymphocytes - cytology ; Lymphocytes - metabolism ; Methods Online ; Promoter Regions, Genetic ; Single-Cell Analysis - methods</subject><ispartof>Nucleic acids research, 2017-06, Vol.45 (10), p.e77-e77</ispartof><rights>The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-feb7f6a446f05462dea895a0ab830f499377b83c13f4b956ba30b76432a051193</citedby><cites>FETCH-LOGICAL-c378t-feb7f6a446f05462dea895a0ab830f499377b83c13f4b956ba30b76432a051193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605247/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605247/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28126923$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Lin</creatorcontrib><creatorcontrib>Wu, Hua-Jun</creatorcontrib><creatorcontrib>Zhu, Haiying</creatorcontrib><creatorcontrib>Kim, Kun-Yong</creatorcontrib><creatorcontrib>Marjani, Sadie L</creatorcontrib><creatorcontrib>Riester, Markus</creatorcontrib><creatorcontrib>Euskirchen, Ghia</creatorcontrib><creatorcontrib>Zi, Xiaoyuan</creatorcontrib><creatorcontrib>Yang, Jennifer</creatorcontrib><creatorcontrib>Han, Jasper</creatorcontrib><creatorcontrib>Snyder, Michael</creatorcontrib><creatorcontrib>Park, In-Hyun</creatorcontrib><creatorcontrib>Irizarry, Rafael</creatorcontrib><creatorcontrib>Weissman, Sherman M</creatorcontrib><creatorcontrib>Michor, Franziska</creatorcontrib><creatorcontrib>Fan, Rong</creatorcontrib><creatorcontrib>Pan, Xinghua</creatorcontrib><title>Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Conventional DNA bisulfite sequencing has been extended to single cell level, but the coverage consistency is insufficient for parallel comparison. Here we report a novel method for genome-wide CpG island (CGI) methylation sequencing for single cells (scCGI-seq), combining methylation-sensitive restriction enzyme digestion and multiple displacement amplification for selective detection of methylated CGIs. We applied this method to analyzing single cells from two types of hematopoietic cells, K562 and GM12878 and small populations of fibroblasts and induced pluripotent stem cells. The method detected 21 798 CGIs (76% of all CGIs) per cell, and the number of CGIs consistently detected from all 16 profiled single cells was 20 864 (72.7%), with 12 961 promoters covered. This coverage represents a substantial improvement over results obtained using single cell reduced representation bisulfite sequencing, with a 66-fold increase in the fraction of consistently profiled CGIs across individual cells. Single cells of the same type were more similar to each other than to other types, but also displayed epigenetic heterogeneity. The method was further validated by comparing the CpG methylation pattern, methylation profile of CGIs/promoters and repeat regions and 41 classes of known regulatory markers to the ENCODE data. Although not every minor methylation differences between cells are detectable, scCGI-seq provides a solid tool for unsupervised stratification of a heterogeneous cell population.</description><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Chromosome Mapping</subject><subject>CpG Islands</subject><subject>DNA Methylation</subject><subject>DNA Restriction Enzymes - chemistry</subject><subject>Epigenesis, Genetic</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Genetic Variation</subject><subject>Genome, Human</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>K562 Cells</subject><subject>Lymphocytes - cytology</subject><subject>Lymphocytes - metabolism</subject><subject>Methods Online</subject><subject>Promoter Regions, Genetic</subject><subject>Single-Cell Analysis - methods</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU9rGzEQxUVJaRy3l36AsMdQ2Eb_Vru6BBKTuIVALu1ZzK5Hjhqt1tlZl_rbR8aJSS8awfvNmxkeY18F_y64VZcJxsv10z8uzQc2E8rIUlsjT9iMK16VguvmlJ0R_eFcaFHpT-xUNkIaK9WMxZtA2-jDhGVIK9xgftJUQIK4o0DF4IvFZlkEipBWRY_T4y7CFIZUYII2IhVrTEOPJXUQsaBpzKoP3YHJ3RTSOgsdxkif2UcPkfDLa52z33e3vxY_yvuH5c_F9X3ZqbqZSo9t7Q1obTyvtJErhMZWwKFtFPfaWlXX-dsJ5XVrK9OC4m1ttJLAKyGsmrOrg-9m2_a46vJFI0S3GUMP484NENz_SgqPbj38dZXhldR1Nrh4NRiH5y3S5PpA-xMg4bAlJxoj80ArREa_HdBuHIhG9Mcxgrt9PC7H4w7xZPj8_WJH9C0P9QKgBI8Q</recordid><startdate>20170602</startdate><enddate>20170602</enddate><creator>Han, Lin</creator><creator>Wu, Hua-Jun</creator><creator>Zhu, Haiying</creator><creator>Kim, Kun-Yong</creator><creator>Marjani, Sadie L</creator><creator>Riester, Markus</creator><creator>Euskirchen, Ghia</creator><creator>Zi, Xiaoyuan</creator><creator>Yang, Jennifer</creator><creator>Han, Jasper</creator><creator>Snyder, Michael</creator><creator>Park, In-Hyun</creator><creator>Irizarry, Rafael</creator><creator>Weissman, Sherman M</creator><creator>Michor, Franziska</creator><creator>Fan, Rong</creator><creator>Pan, Xinghua</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170602</creationdate><title>Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells</title><author>Han, Lin ; Wu, Hua-Jun ; Zhu, Haiying ; Kim, Kun-Yong ; Marjani, Sadie L ; Riester, Markus ; Euskirchen, Ghia ; Zi, Xiaoyuan ; Yang, Jennifer ; Han, Jasper ; Snyder, Michael ; Park, In-Hyun ; Irizarry, Rafael ; Weissman, Sherman M ; Michor, Franziska ; Fan, Rong ; Pan, Xinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-feb7f6a446f05462dea895a0ab830f499377b83c13f4b956ba30b76432a051193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Chromosome Mapping</topic><topic>CpG Islands</topic><topic>DNA Methylation</topic><topic>DNA Restriction Enzymes - chemistry</topic><topic>Epigenesis, Genetic</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Genetic Variation</topic><topic>Genome, Human</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>K562 Cells</topic><topic>Lymphocytes - cytology</topic><topic>Lymphocytes - metabolism</topic><topic>Methods Online</topic><topic>Promoter Regions, Genetic</topic><topic>Single-Cell Analysis - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Lin</creatorcontrib><creatorcontrib>Wu, Hua-Jun</creatorcontrib><creatorcontrib>Zhu, Haiying</creatorcontrib><creatorcontrib>Kim, Kun-Yong</creatorcontrib><creatorcontrib>Marjani, Sadie L</creatorcontrib><creatorcontrib>Riester, Markus</creatorcontrib><creatorcontrib>Euskirchen, Ghia</creatorcontrib><creatorcontrib>Zi, Xiaoyuan</creatorcontrib><creatorcontrib>Yang, Jennifer</creatorcontrib><creatorcontrib>Han, Jasper</creatorcontrib><creatorcontrib>Snyder, Michael</creatorcontrib><creatorcontrib>Park, In-Hyun</creatorcontrib><creatorcontrib>Irizarry, Rafael</creatorcontrib><creatorcontrib>Weissman, Sherman M</creatorcontrib><creatorcontrib>Michor, Franziska</creatorcontrib><creatorcontrib>Fan, Rong</creatorcontrib><creatorcontrib>Pan, Xinghua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Lin</au><au>Wu, Hua-Jun</au><au>Zhu, Haiying</au><au>Kim, Kun-Yong</au><au>Marjani, Sadie L</au><au>Riester, Markus</au><au>Euskirchen, Ghia</au><au>Zi, Xiaoyuan</au><au>Yang, Jennifer</au><au>Han, Jasper</au><au>Snyder, Michael</au><au>Park, In-Hyun</au><au>Irizarry, Rafael</au><au>Weissman, Sherman M</au><au>Michor, Franziska</au><au>Fan, Rong</au><au>Pan, Xinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2017-06-02</date><risdate>2017</risdate><volume>45</volume><issue>10</issue><spage>e77</spage><epage>e77</epage><pages>e77-e77</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Conventional DNA bisulfite sequencing has been extended to single cell level, but the coverage consistency is insufficient for parallel comparison. Here we report a novel method for genome-wide CpG island (CGI) methylation sequencing for single cells (scCGI-seq), combining methylation-sensitive restriction enzyme digestion and multiple displacement amplification for selective detection of methylated CGIs. We applied this method to analyzing single cells from two types of hematopoietic cells, K562 and GM12878 and small populations of fibroblasts and induced pluripotent stem cells. The method detected 21 798 CGIs (76% of all CGIs) per cell, and the number of CGIs consistently detected from all 16 profiled single cells was 20 864 (72.7%), with 12 961 promoters covered. This coverage represents a substantial improvement over results obtained using single cell reduced representation bisulfite sequencing, with a 66-fold increase in the fraction of consistently profiled CGIs across individual cells. Single cells of the same type were more similar to each other than to other types, but also displayed epigenetic heterogeneity. The method was further validated by comparing the CpG methylation pattern, methylation profile of CGIs/promoters and repeat regions and 41 classes of known regulatory markers to the ENCODE data. Although not every minor methylation differences between cells are detectable, scCGI-seq provides a solid tool for unsupervised stratification of a heterogeneous cell population.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>28126923</pmid><doi>10.1093/nar/gkx026</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2017-06, Vol.45 (10), p.e77-e77
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5605247
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Cell Line
Cell Line, Tumor
Chromosome Mapping
CpG Islands
DNA Methylation
DNA Restriction Enzymes - chemistry
Epigenesis, Genetic
Fibroblasts - cytology
Fibroblasts - metabolism
Genetic Variation
Genome, Human
High-Throughput Nucleotide Sequencing
Humans
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
K562 Cells
Lymphocytes - cytology
Lymphocytes - metabolism
Methods Online
Promoter Regions, Genetic
Single-Cell Analysis - methods
title Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bisulfite-independent%20analysis%20of%20CpG%20island%20methylation%20enables%20genome-scale%20stratification%20of%20single%20cells&rft.jtitle=Nucleic%20acids%20research&rft.au=Han,%20Lin&rft.date=2017-06-02&rft.volume=45&rft.issue=10&rft.spage=e77&rft.epage=e77&rft.pages=e77-e77&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkx026&rft_dat=%3Cproquest_pubme%3E1862764911%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862764911&rft_id=info:pmid/28126923&rfr_iscdi=true