Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees
Summary Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final r...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2017-10, Vol.15 (10), p.1309-1321 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1321 |
---|---|
container_issue | 10 |
container_start_page | 1309 |
container_title | Plant biotechnology journal |
container_volume | 15 |
creator | Jin, Yan‐Li Tang, Ren‐Jie Wang, Hai‐Hai Jiang, Chun‐Mei Bao, Yan Yang, Yang Liang, Mei‐Xia Sun, Zhen‐Cang Kong, Fan‐Jing Li, Bei Zhang, Hong‐Xia |
description | Summary
Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final rate‐limiting step in the BR‐biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded‐growth phenotype of the Arabidopsis cyp85a2‐2 and tomato dx mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type, plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggests that PtCYP85A3 could be used as a potential candidate gene for engineering fast‐growing trees with improved wood production. |
doi_str_mv | 10.1111/pbi.12717 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5595715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733212993</galeid><sourcerecordid>A733212993</sourcerecordid><originalsourceid>FETCH-LOGICAL-g4957-da23d3f96fd4761a3e00212ad3719da49bd49c50caac011d21f538aefdb9392e3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEoqVw4A-gSFy47NafcXxBWlZAK1XqHuDAyXLsSdZVYgc7aem_x-m2K-CCffDI88zrmfEUxVuM1jiv87Fxa0wEFs-KU8wqsRIVJ8-PNmMnxauUbhAiuOLVy-KE1ITXsqpOi_31LUT4NUZIyQVfhrbchXHu51RO0Zl9MDqOutz-2NV8Q8sxhiFMkMouhrtpX2pvy8aFQae0-OxspkXF-RytferAO5NNgPS6eNHqPsGbx_Os-P7l87ftxerq-uvldnO16pjkYmU1oZa2smotExXWFJasibZUYGk1k41l0nBktDYIY0twy2mtobWNpJIAPSs-HnTHuRnAGvA5k16N0Q063qugnfrb491edeFWcZ7fxzwLfHgUiOHnDGlSg0sG-l57CHNSBCHEpWAM_xfFdcZYxQjK6Pt_0JswR587obCkQmKO-UKtD1Sne1DOtyGnaPK2MDgTPLQu328EpbknUtIc8O7Pao9lPn1wBs4PwF2OvD_6MVLL5Kg8OephctTu0-WDQX8DvbK2rQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937915150</pqid></control><display><type>article</type><title>Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jin, Yan‐Li ; Tang, Ren‐Jie ; Wang, Hai‐Hai ; Jiang, Chun‐Mei ; Bao, Yan ; Yang, Yang ; Liang, Mei‐Xia ; Sun, Zhen‐Cang ; Kong, Fan‐Jing ; Li, Bei ; Zhang, Hong‐Xia</creator><creatorcontrib>Jin, Yan‐Li ; Tang, Ren‐Jie ; Wang, Hai‐Hai ; Jiang, Chun‐Mei ; Bao, Yan ; Yang, Yang ; Liang, Mei‐Xia ; Sun, Zhen‐Cang ; Kong, Fan‐Jing ; Li, Bei ; Zhang, Hong‐Xia</creatorcontrib><description>Summary
Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final rate‐limiting step in the BR‐biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded‐growth phenotype of the Arabidopsis cyp85a2‐2 and tomato dx mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type, plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggests that PtCYP85A3 could be used as a potential candidate gene for engineering fast‐growing trees with improved wood production.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12717</identifier><identifier>PMID: 28258966</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Amino Acid Sequence ; Arabidopsis ; Biomass ; biomass production ; Biotechnology ; biotic stress ; Brassinolide ; Brassinosteroids ; Brassinosteroids - biosynthesis ; Cauliflower mosaic virus ; Cell walls ; Cellulose ; Comparative analysis ; Crop yield ; CYP85A3 ; cytochrome P-450 ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; Cytochrome P450 ; Cytochrome P450 monooxygenase ; engineering ; Food ; fruit yield ; gene overexpression ; genes ; Genetic engineering ; Genetically engineered foods ; Homology ; Hormones ; Lignin ; Lycopersicon esculentum ; mutants ; phenotype ; Phenotypes ; Plant growth ; Plant Proteins - metabolism ; Plant reproduction ; Plant Shoots - growth & development ; Plants ; Plants (botany) ; Plants, Genetically Modified ; Poplar ; Populus - enzymology ; Populus - genetics ; Populus - growth & development ; Populus trichocarpa ; promoter regions ; reproduction ; Tomatoes ; transgenic plant ; Transgenic plants ; Trees ; Trees - enzymology ; Trees - growth & development ; Viruses ; Wall thickness ; wood ; Wood - cytology ; Wood - growth & development ; Xylem ; xylem differentiation</subject><ispartof>Plant biotechnology journal, 2017-10, Vol.15 (10), p.1309-1321</ispartof><rights>2017 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>COPYRIGHT 2017 John Wiley & Sons, Inc.</rights><rights>2017. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12717$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12717$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28258966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Yan‐Li</creatorcontrib><creatorcontrib>Tang, Ren‐Jie</creatorcontrib><creatorcontrib>Wang, Hai‐Hai</creatorcontrib><creatorcontrib>Jiang, Chun‐Mei</creatorcontrib><creatorcontrib>Bao, Yan</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Liang, Mei‐Xia</creatorcontrib><creatorcontrib>Sun, Zhen‐Cang</creatorcontrib><creatorcontrib>Kong, Fan‐Jing</creatorcontrib><creatorcontrib>Li, Bei</creatorcontrib><creatorcontrib>Zhang, Hong‐Xia</creatorcontrib><title>Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final rate‐limiting step in the BR‐biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded‐growth phenotype of the Arabidopsis cyp85a2‐2 and tomato dx mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type, plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggests that PtCYP85A3 could be used as a potential candidate gene for engineering fast‐growing trees with improved wood production.</description><subject>Amino Acid Sequence</subject><subject>Arabidopsis</subject><subject>Biomass</subject><subject>biomass production</subject><subject>Biotechnology</subject><subject>biotic stress</subject><subject>Brassinolide</subject><subject>Brassinosteroids</subject><subject>Brassinosteroids - biosynthesis</subject><subject>Cauliflower mosaic virus</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Comparative analysis</subject><subject>Crop yield</subject><subject>CYP85A3</subject><subject>cytochrome P-450</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Cytochrome P450</subject><subject>Cytochrome P450 monooxygenase</subject><subject>engineering</subject><subject>Food</subject><subject>fruit yield</subject><subject>gene overexpression</subject><subject>genes</subject><subject>Genetic engineering</subject><subject>Genetically engineered foods</subject><subject>Homology</subject><subject>Hormones</subject><subject>Lignin</subject><subject>Lycopersicon esculentum</subject><subject>mutants</subject><subject>phenotype</subject><subject>Phenotypes</subject><subject>Plant growth</subject><subject>Plant Proteins - metabolism</subject><subject>Plant reproduction</subject><subject>Plant Shoots - growth & development</subject><subject>Plants</subject><subject>Plants (botany)</subject><subject>Plants, Genetically Modified</subject><subject>Poplar</subject><subject>Populus - enzymology</subject><subject>Populus - genetics</subject><subject>Populus - growth & development</subject><subject>Populus trichocarpa</subject><subject>promoter regions</subject><subject>reproduction</subject><subject>Tomatoes</subject><subject>transgenic plant</subject><subject>Transgenic plants</subject><subject>Trees</subject><subject>Trees - enzymology</subject><subject>Trees - growth & development</subject><subject>Viruses</subject><subject>Wall thickness</subject><subject>wood</subject><subject>Wood - cytology</subject><subject>Wood - growth & development</subject><subject>Xylem</subject><subject>xylem differentiation</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkk1v1DAQhiMEoqVw4A-gSFy47NafcXxBWlZAK1XqHuDAyXLsSdZVYgc7aem_x-m2K-CCffDI88zrmfEUxVuM1jiv87Fxa0wEFs-KU8wqsRIVJ8-PNmMnxauUbhAiuOLVy-KE1ITXsqpOi_31LUT4NUZIyQVfhrbchXHu51RO0Zl9MDqOutz-2NV8Q8sxhiFMkMouhrtpX2pvy8aFQae0-OxspkXF-RytferAO5NNgPS6eNHqPsGbx_Os-P7l87ftxerq-uvldnO16pjkYmU1oZa2smotExXWFJasibZUYGk1k41l0nBktDYIY0twy2mtobWNpJIAPSs-HnTHuRnAGvA5k16N0Q063qugnfrb491edeFWcZ7fxzwLfHgUiOHnDGlSg0sG-l57CHNSBCHEpWAM_xfFdcZYxQjK6Pt_0JswR587obCkQmKO-UKtD1Sne1DOtyGnaPK2MDgTPLQu328EpbknUtIc8O7Pao9lPn1wBs4PwF2OvD_6MVLL5Kg8OephctTu0-WDQX8DvbK2rQ</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Jin, Yan‐Li</creator><creator>Tang, Ren‐Jie</creator><creator>Wang, Hai‐Hai</creator><creator>Jiang, Chun‐Mei</creator><creator>Bao, Yan</creator><creator>Yang, Yang</creator><creator>Liang, Mei‐Xia</creator><creator>Sun, Zhen‐Cang</creator><creator>Kong, Fan‐Jing</creator><creator>Li, Bei</creator><creator>Zhang, Hong‐Xia</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>201710</creationdate><title>Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees</title><author>Jin, Yan‐Li ; Tang, Ren‐Jie ; Wang, Hai‐Hai ; Jiang, Chun‐Mei ; Bao, Yan ; Yang, Yang ; Liang, Mei‐Xia ; Sun, Zhen‐Cang ; Kong, Fan‐Jing ; Li, Bei ; Zhang, Hong‐Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g4957-da23d3f96fd4761a3e00212ad3719da49bd49c50caac011d21f538aefdb9392e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Sequence</topic><topic>Arabidopsis</topic><topic>Biomass</topic><topic>biomass production</topic><topic>Biotechnology</topic><topic>biotic stress</topic><topic>Brassinolide</topic><topic>Brassinosteroids</topic><topic>Brassinosteroids - biosynthesis</topic><topic>Cauliflower mosaic virus</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Comparative analysis</topic><topic>Crop yield</topic><topic>CYP85A3</topic><topic>cytochrome P-450</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Cytochrome P450</topic><topic>Cytochrome P450 monooxygenase</topic><topic>engineering</topic><topic>Food</topic><topic>fruit yield</topic><topic>gene overexpression</topic><topic>genes</topic><topic>Genetic engineering</topic><topic>Genetically engineered foods</topic><topic>Homology</topic><topic>Hormones</topic><topic>Lignin</topic><topic>Lycopersicon esculentum</topic><topic>mutants</topic><topic>phenotype</topic><topic>Phenotypes</topic><topic>Plant growth</topic><topic>Plant Proteins - metabolism</topic><topic>Plant reproduction</topic><topic>Plant Shoots - growth & development</topic><topic>Plants</topic><topic>Plants (botany)</topic><topic>Plants, Genetically Modified</topic><topic>Poplar</topic><topic>Populus - enzymology</topic><topic>Populus - genetics</topic><topic>Populus - growth & development</topic><topic>Populus trichocarpa</topic><topic>promoter regions</topic><topic>reproduction</topic><topic>Tomatoes</topic><topic>transgenic plant</topic><topic>Transgenic plants</topic><topic>Trees</topic><topic>Trees - enzymology</topic><topic>Trees - growth & development</topic><topic>Viruses</topic><topic>Wall thickness</topic><topic>wood</topic><topic>Wood - cytology</topic><topic>Wood - growth & development</topic><topic>Xylem</topic><topic>xylem differentiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Yan‐Li</creatorcontrib><creatorcontrib>Tang, Ren‐Jie</creatorcontrib><creatorcontrib>Wang, Hai‐Hai</creatorcontrib><creatorcontrib>Jiang, Chun‐Mei</creatorcontrib><creatorcontrib>Bao, Yan</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Liang, Mei‐Xia</creatorcontrib><creatorcontrib>Sun, Zhen‐Cang</creatorcontrib><creatorcontrib>Kong, Fan‐Jing</creatorcontrib><creatorcontrib>Li, Bei</creatorcontrib><creatorcontrib>Zhang, Hong‐Xia</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Yan‐Li</au><au>Tang, Ren‐Jie</au><au>Wang, Hai‐Hai</au><au>Jiang, Chun‐Mei</au><au>Bao, Yan</au><au>Yang, Yang</au><au>Liang, Mei‐Xia</au><au>Sun, Zhen‐Cang</au><au>Kong, Fan‐Jing</au><au>Li, Bei</au><au>Zhang, Hong‐Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2017-10</date><risdate>2017</risdate><volume>15</volume><issue>10</issue><spage>1309</spage><epage>1321</epage><pages>1309-1321</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary
Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final rate‐limiting step in the BR‐biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded‐growth phenotype of the Arabidopsis cyp85a2‐2 and tomato dx mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type, plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggests that PtCYP85A3 could be used as a potential candidate gene for engineering fast‐growing trees with improved wood production.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>28258966</pmid><doi>10.1111/pbi.12717</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2017-10, Vol.15 (10), p.1309-1321 |
issn | 1467-7644 1467-7652 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5595715 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Amino Acid Sequence Arabidopsis Biomass biomass production Biotechnology biotic stress Brassinolide Brassinosteroids Brassinosteroids - biosynthesis Cauliflower mosaic virus Cell walls Cellulose Comparative analysis Crop yield CYP85A3 cytochrome P-450 Cytochrome P-450 Enzyme System - genetics Cytochrome P-450 Enzyme System - metabolism Cytochrome P450 Cytochrome P450 monooxygenase engineering Food fruit yield gene overexpression genes Genetic engineering Genetically engineered foods Homology Hormones Lignin Lycopersicon esculentum mutants phenotype Phenotypes Plant growth Plant Proteins - metabolism Plant reproduction Plant Shoots - growth & development Plants Plants (botany) Plants, Genetically Modified Poplar Populus - enzymology Populus - genetics Populus - growth & development Populus trichocarpa promoter regions reproduction Tomatoes transgenic plant Transgenic plants Trees Trees - enzymology Trees - growth & development Viruses Wall thickness wood Wood - cytology Wood - growth & development Xylem xylem differentiation |
title | Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A11%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20Populus%20trichocarpa%20CYP85A3%20promotes%20growth%20and%20biomass%20production%20in%20transgenic%20trees&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Jin,%20Yan%E2%80%90Li&rft.date=2017-10&rft.volume=15&rft.issue=10&rft.spage=1309&rft.epage=1321&rft.pages=1309-1321&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12717&rft_dat=%3Cgale_pubme%3EA733212993%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937915150&rft_id=info:pmid/28258966&rft_galeid=A733212993&rfr_iscdi=true |