Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees

Summary Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2017-10, Vol.15 (10), p.1309-1321
Hauptverfasser: Jin, Yan‐Li, Tang, Ren‐Jie, Wang, Hai‐Hai, Jiang, Chun‐Mei, Bao, Yan, Yang, Yang, Liang, Mei‐Xia, Sun, Zhen‐Cang, Kong, Fan‐Jing, Li, Bei, Zhang, Hong‐Xia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1321
container_issue 10
container_start_page 1309
container_title Plant biotechnology journal
container_volume 15
creator Jin, Yan‐Li
Tang, Ren‐Jie
Wang, Hai‐Hai
Jiang, Chun‐Mei
Bao, Yan
Yang, Yang
Liang, Mei‐Xia
Sun, Zhen‐Cang
Kong, Fan‐Jing
Li, Bei
Zhang, Hong‐Xia
description Summary Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final rate‐limiting step in the BR‐biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded‐growth phenotype of the Arabidopsis cyp85a2‐2 and tomato dx mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type, plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggests that PtCYP85A3 could be used as a potential candidate gene for engineering fast‐growing trees with improved wood production.
doi_str_mv 10.1111/pbi.12717
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5595715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733212993</galeid><sourcerecordid>A733212993</sourcerecordid><originalsourceid>FETCH-LOGICAL-g4957-da23d3f96fd4761a3e00212ad3719da49bd49c50caac011d21f538aefdb9392e3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEoqVw4A-gSFy47NafcXxBWlZAK1XqHuDAyXLsSdZVYgc7aem_x-m2K-CCffDI88zrmfEUxVuM1jiv87Fxa0wEFs-KU8wqsRIVJ8-PNmMnxauUbhAiuOLVy-KE1ITXsqpOi_31LUT4NUZIyQVfhrbchXHu51RO0Zl9MDqOutz-2NV8Q8sxhiFMkMouhrtpX2pvy8aFQae0-OxspkXF-RytferAO5NNgPS6eNHqPsGbx_Os-P7l87ftxerq-uvldnO16pjkYmU1oZa2smotExXWFJasibZUYGk1k41l0nBktDYIY0twy2mtobWNpJIAPSs-HnTHuRnAGvA5k16N0Q063qugnfrb491edeFWcZ7fxzwLfHgUiOHnDGlSg0sG-l57CHNSBCHEpWAM_xfFdcZYxQjK6Pt_0JswR587obCkQmKO-UKtD1Sne1DOtyGnaPK2MDgTPLQu328EpbknUtIc8O7Pao9lPn1wBs4PwF2OvD_6MVLL5Kg8OephctTu0-WDQX8DvbK2rQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937915150</pqid></control><display><type>article</type><title>Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jin, Yan‐Li ; Tang, Ren‐Jie ; Wang, Hai‐Hai ; Jiang, Chun‐Mei ; Bao, Yan ; Yang, Yang ; Liang, Mei‐Xia ; Sun, Zhen‐Cang ; Kong, Fan‐Jing ; Li, Bei ; Zhang, Hong‐Xia</creator><creatorcontrib>Jin, Yan‐Li ; Tang, Ren‐Jie ; Wang, Hai‐Hai ; Jiang, Chun‐Mei ; Bao, Yan ; Yang, Yang ; Liang, Mei‐Xia ; Sun, Zhen‐Cang ; Kong, Fan‐Jing ; Li, Bei ; Zhang, Hong‐Xia</creatorcontrib><description>Summary Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final rate‐limiting step in the BR‐biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded‐growth phenotype of the Arabidopsis cyp85a2‐2 and tomato dx mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type, plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggests that PtCYP85A3 could be used as a potential candidate gene for engineering fast‐growing trees with improved wood production.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12717</identifier><identifier>PMID: 28258966</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Amino Acid Sequence ; Arabidopsis ; Biomass ; biomass production ; Biotechnology ; biotic stress ; Brassinolide ; Brassinosteroids ; Brassinosteroids - biosynthesis ; Cauliflower mosaic virus ; Cell walls ; Cellulose ; Comparative analysis ; Crop yield ; CYP85A3 ; cytochrome P-450 ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; Cytochrome P450 ; Cytochrome P450 monooxygenase ; engineering ; Food ; fruit yield ; gene overexpression ; genes ; Genetic engineering ; Genetically engineered foods ; Homology ; Hormones ; Lignin ; Lycopersicon esculentum ; mutants ; phenotype ; Phenotypes ; Plant growth ; Plant Proteins - metabolism ; Plant reproduction ; Plant Shoots - growth &amp; development ; Plants ; Plants (botany) ; Plants, Genetically Modified ; Poplar ; Populus - enzymology ; Populus - genetics ; Populus - growth &amp; development ; Populus trichocarpa ; promoter regions ; reproduction ; Tomatoes ; transgenic plant ; Transgenic plants ; Trees ; Trees - enzymology ; Trees - growth &amp; development ; Viruses ; Wall thickness ; wood ; Wood - cytology ; Wood - growth &amp; development ; Xylem ; xylem differentiation</subject><ispartof>Plant biotechnology journal, 2017-10, Vol.15 (10), p.1309-1321</ispartof><rights>2017 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>COPYRIGHT 2017 John Wiley &amp; Sons, Inc.</rights><rights>2017. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12717$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12717$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28258966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Yan‐Li</creatorcontrib><creatorcontrib>Tang, Ren‐Jie</creatorcontrib><creatorcontrib>Wang, Hai‐Hai</creatorcontrib><creatorcontrib>Jiang, Chun‐Mei</creatorcontrib><creatorcontrib>Bao, Yan</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Liang, Mei‐Xia</creatorcontrib><creatorcontrib>Sun, Zhen‐Cang</creatorcontrib><creatorcontrib>Kong, Fan‐Jing</creatorcontrib><creatorcontrib>Li, Bei</creatorcontrib><creatorcontrib>Zhang, Hong‐Xia</creatorcontrib><title>Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final rate‐limiting step in the BR‐biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded‐growth phenotype of the Arabidopsis cyp85a2‐2 and tomato dx mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type, plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggests that PtCYP85A3 could be used as a potential candidate gene for engineering fast‐growing trees with improved wood production.</description><subject>Amino Acid Sequence</subject><subject>Arabidopsis</subject><subject>Biomass</subject><subject>biomass production</subject><subject>Biotechnology</subject><subject>biotic stress</subject><subject>Brassinolide</subject><subject>Brassinosteroids</subject><subject>Brassinosteroids - biosynthesis</subject><subject>Cauliflower mosaic virus</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Comparative analysis</subject><subject>Crop yield</subject><subject>CYP85A3</subject><subject>cytochrome P-450</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Cytochrome P450</subject><subject>Cytochrome P450 monooxygenase</subject><subject>engineering</subject><subject>Food</subject><subject>fruit yield</subject><subject>gene overexpression</subject><subject>genes</subject><subject>Genetic engineering</subject><subject>Genetically engineered foods</subject><subject>Homology</subject><subject>Hormones</subject><subject>Lignin</subject><subject>Lycopersicon esculentum</subject><subject>mutants</subject><subject>phenotype</subject><subject>Phenotypes</subject><subject>Plant growth</subject><subject>Plant Proteins - metabolism</subject><subject>Plant reproduction</subject><subject>Plant Shoots - growth &amp; development</subject><subject>Plants</subject><subject>Plants (botany)</subject><subject>Plants, Genetically Modified</subject><subject>Poplar</subject><subject>Populus - enzymology</subject><subject>Populus - genetics</subject><subject>Populus - growth &amp; development</subject><subject>Populus trichocarpa</subject><subject>promoter regions</subject><subject>reproduction</subject><subject>Tomatoes</subject><subject>transgenic plant</subject><subject>Transgenic plants</subject><subject>Trees</subject><subject>Trees - enzymology</subject><subject>Trees - growth &amp; development</subject><subject>Viruses</subject><subject>Wall thickness</subject><subject>wood</subject><subject>Wood - cytology</subject><subject>Wood - growth &amp; development</subject><subject>Xylem</subject><subject>xylem differentiation</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkk1v1DAQhiMEoqVw4A-gSFy47NafcXxBWlZAK1XqHuDAyXLsSdZVYgc7aem_x-m2K-CCffDI88zrmfEUxVuM1jiv87Fxa0wEFs-KU8wqsRIVJ8-PNmMnxauUbhAiuOLVy-KE1ITXsqpOi_31LUT4NUZIyQVfhrbchXHu51RO0Zl9MDqOutz-2NV8Q8sxhiFMkMouhrtpX2pvy8aFQae0-OxspkXF-RytferAO5NNgPS6eNHqPsGbx_Os-P7l87ftxerq-uvldnO16pjkYmU1oZa2smotExXWFJasibZUYGk1k41l0nBktDYIY0twy2mtobWNpJIAPSs-HnTHuRnAGvA5k16N0Q063qugnfrb491edeFWcZ7fxzwLfHgUiOHnDGlSg0sG-l57CHNSBCHEpWAM_xfFdcZYxQjK6Pt_0JswR587obCkQmKO-UKtD1Sne1DOtyGnaPK2MDgTPLQu328EpbknUtIc8O7Pao9lPn1wBs4PwF2OvD_6MVLL5Kg8OephctTu0-WDQX8DvbK2rQ</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Jin, Yan‐Li</creator><creator>Tang, Ren‐Jie</creator><creator>Wang, Hai‐Hai</creator><creator>Jiang, Chun‐Mei</creator><creator>Bao, Yan</creator><creator>Yang, Yang</creator><creator>Liang, Mei‐Xia</creator><creator>Sun, Zhen‐Cang</creator><creator>Kong, Fan‐Jing</creator><creator>Li, Bei</creator><creator>Zhang, Hong‐Xia</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>201710</creationdate><title>Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees</title><author>Jin, Yan‐Li ; Tang, Ren‐Jie ; Wang, Hai‐Hai ; Jiang, Chun‐Mei ; Bao, Yan ; Yang, Yang ; Liang, Mei‐Xia ; Sun, Zhen‐Cang ; Kong, Fan‐Jing ; Li, Bei ; Zhang, Hong‐Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g4957-da23d3f96fd4761a3e00212ad3719da49bd49c50caac011d21f538aefdb9392e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Sequence</topic><topic>Arabidopsis</topic><topic>Biomass</topic><topic>biomass production</topic><topic>Biotechnology</topic><topic>biotic stress</topic><topic>Brassinolide</topic><topic>Brassinosteroids</topic><topic>Brassinosteroids - biosynthesis</topic><topic>Cauliflower mosaic virus</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Comparative analysis</topic><topic>Crop yield</topic><topic>CYP85A3</topic><topic>cytochrome P-450</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Cytochrome P450</topic><topic>Cytochrome P450 monooxygenase</topic><topic>engineering</topic><topic>Food</topic><topic>fruit yield</topic><topic>gene overexpression</topic><topic>genes</topic><topic>Genetic engineering</topic><topic>Genetically engineered foods</topic><topic>Homology</topic><topic>Hormones</topic><topic>Lignin</topic><topic>Lycopersicon esculentum</topic><topic>mutants</topic><topic>phenotype</topic><topic>Phenotypes</topic><topic>Plant growth</topic><topic>Plant Proteins - metabolism</topic><topic>Plant reproduction</topic><topic>Plant Shoots - growth &amp; development</topic><topic>Plants</topic><topic>Plants (botany)</topic><topic>Plants, Genetically Modified</topic><topic>Poplar</topic><topic>Populus - enzymology</topic><topic>Populus - genetics</topic><topic>Populus - growth &amp; development</topic><topic>Populus trichocarpa</topic><topic>promoter regions</topic><topic>reproduction</topic><topic>Tomatoes</topic><topic>transgenic plant</topic><topic>Transgenic plants</topic><topic>Trees</topic><topic>Trees - enzymology</topic><topic>Trees - growth &amp; development</topic><topic>Viruses</topic><topic>Wall thickness</topic><topic>wood</topic><topic>Wood - cytology</topic><topic>Wood - growth &amp; development</topic><topic>Xylem</topic><topic>xylem differentiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Yan‐Li</creatorcontrib><creatorcontrib>Tang, Ren‐Jie</creatorcontrib><creatorcontrib>Wang, Hai‐Hai</creatorcontrib><creatorcontrib>Jiang, Chun‐Mei</creatorcontrib><creatorcontrib>Bao, Yan</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Liang, Mei‐Xia</creatorcontrib><creatorcontrib>Sun, Zhen‐Cang</creatorcontrib><creatorcontrib>Kong, Fan‐Jing</creatorcontrib><creatorcontrib>Li, Bei</creatorcontrib><creatorcontrib>Zhang, Hong‐Xia</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Yan‐Li</au><au>Tang, Ren‐Jie</au><au>Wang, Hai‐Hai</au><au>Jiang, Chun‐Mei</au><au>Bao, Yan</au><au>Yang, Yang</au><au>Liang, Mei‐Xia</au><au>Sun, Zhen‐Cang</au><au>Kong, Fan‐Jing</au><au>Li, Bei</au><au>Zhang, Hong‐Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2017-10</date><risdate>2017</risdate><volume>15</volume><issue>10</issue><spage>1309</spage><epage>1321</epage><pages>1309-1321</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final rate‐limiting step in the BR‐biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded‐growth phenotype of the Arabidopsis cyp85a2‐2 and tomato dx mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type, plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggests that PtCYP85A3 could be used as a potential candidate gene for engineering fast‐growing trees with improved wood production.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>28258966</pmid><doi>10.1111/pbi.12717</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2017-10, Vol.15 (10), p.1309-1321
issn 1467-7644
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5595715
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Amino Acid Sequence
Arabidopsis
Biomass
biomass production
Biotechnology
biotic stress
Brassinolide
Brassinosteroids
Brassinosteroids - biosynthesis
Cauliflower mosaic virus
Cell walls
Cellulose
Comparative analysis
Crop yield
CYP85A3
cytochrome P-450
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
Cytochrome P450
Cytochrome P450 monooxygenase
engineering
Food
fruit yield
gene overexpression
genes
Genetic engineering
Genetically engineered foods
Homology
Hormones
Lignin
Lycopersicon esculentum
mutants
phenotype
Phenotypes
Plant growth
Plant Proteins - metabolism
Plant reproduction
Plant Shoots - growth & development
Plants
Plants (botany)
Plants, Genetically Modified
Poplar
Populus - enzymology
Populus - genetics
Populus - growth & development
Populus trichocarpa
promoter regions
reproduction
Tomatoes
transgenic plant
Transgenic plants
Trees
Trees - enzymology
Trees - growth & development
Viruses
Wall thickness
wood
Wood - cytology
Wood - growth & development
Xylem
xylem differentiation
title Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A11%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20Populus%20trichocarpa%20CYP85A3%20promotes%20growth%20and%20biomass%20production%20in%20transgenic%20trees&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Jin,%20Yan%E2%80%90Li&rft.date=2017-10&rft.volume=15&rft.issue=10&rft.spage=1309&rft.epage=1321&rft.pages=1309-1321&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12717&rft_dat=%3Cgale_pubme%3EA733212993%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937915150&rft_id=info:pmid/28258966&rft_galeid=A733212993&rfr_iscdi=true