Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels

In the absence of advection, confined diffusion characterizes transport in many natural and artificial devices, such as ionic channels, zeolites, and nanopores. While extensive theoretical and numerical studies on this subject have produced many important predictions, experimental verifications of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-09, Vol.114 (36), p.9564-9569
Hauptverfasser: Yang, Xiang, Liu, Chang, Li, Yunyun, Marchesoni, Fabio, Hänggi, Peter, Zhang, H. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9569
container_issue 36
container_start_page 9564
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Yang, Xiang
Liu, Chang
Li, Yunyun
Marchesoni, Fabio
Hänggi, Peter
Zhang, H. P.
description In the absence of advection, confined diffusion characterizes transport in many natural and artificial devices, such as ionic channels, zeolites, and nanopores. While extensive theoretical and numerical studies on this subject have produced many important predictions, experimental verifications of the predictions are rare. Here, we experimentally measure colloidal diffusion times in microchannels with periodically varying width and contrast results with predictions from the Fick–Jacobs theory and Brownian dynamics simulation. While the theory and simulation correctly predict the entropic effect of the varying channel width, they fail to account for hydrodynamic effects, which include both an overall decrease and a spatial variation of diffusivity in channels. Neglecting such hydrodynamic effects, the theory and simulation underestimate the mean and standard deviation of first passage times by 40% in channels with a neck width twice the particle diameter. We further show that the validity of the Fick–Jacobs theory can be restored by reformulating it in terms of the experimentally measured diffusivity. Our work thus shows that hydrodynamic effects play a key role in diffusive transport through narrow channels and should be included in theoretical and numerical models.
doi_str_mv 10.1073/pnas.1707815114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5594686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26487606</jstor_id><sourcerecordid>26487606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-503eb47fbf43c2c430d052210ca0e5eaf08130c01189c5a2a6916c35edc579f93</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpaTZpzz21GHrJxcmM9WHpUiihSQqBXJqz0MpSosUrbSU7sP99ZTYfbU9i3vz0ZoZHyCeEM4Senu-iKWfYQy-RI7I3ZIWgsBVMwVuyAuj6VrKOHZHjUjYAoLiE9-Sok5IiAFuR2-v9kNOwj2YbbGPi0Lg45bSrhfPe2ak0KTY2jWMKgxmbIXg_l1C1sMg5z_dmckNjH0yMbiwfyDtvxuI-Pr0n5O7yx6-L6_bm9urnxfeb1nJQU8uBujXr_dozajvLKAzAuw7BGnDcGQ8SKVhAlMpy0xmhUFjK3WB5r7yiJ-TbwXc3r7dVXbY2o97lsDV5r5MJ-t9ODA_6Pj1qzhUTUlSD0yeDnH7Prkx6G4p142iiS3PRqCj2yJhaZn39D92kOcd6XqWYYJQqKit1fqBsTqVk51-WQdBLWHoJS7-GVX98-fuGF_45nQp8PgCbMqX82hdM9gIE_QP3pprh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946433938</pqid></control><display><type>article</type><title>Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Xiang ; Liu, Chang ; Li, Yunyun ; Marchesoni, Fabio ; Hänggi, Peter ; Zhang, H. P.</creator><creatorcontrib>Yang, Xiang ; Liu, Chang ; Li, Yunyun ; Marchesoni, Fabio ; Hänggi, Peter ; Zhang, H. P.</creatorcontrib><description>In the absence of advection, confined diffusion characterizes transport in many natural and artificial devices, such as ionic channels, zeolites, and nanopores. While extensive theoretical and numerical studies on this subject have produced many important predictions, experimental verifications of the predictions are rare. Here, we experimentally measure colloidal diffusion times in microchannels with periodically varying width and contrast results with predictions from the Fick–Jacobs theory and Brownian dynamics simulation. While the theory and simulation correctly predict the entropic effect of the varying channel width, they fail to account for hydrodynamic effects, which include both an overall decrease and a spatial variation of diffusivity in channels. Neglecting such hydrodynamic effects, the theory and simulation underestimate the mean and standard deviation of first passage times by 40% in channels with a neck width twice the particle diameter. We further show that the validity of the Fick–Jacobs theory can be restored by reformulating it in terms of the experimentally measured diffusivity. Our work thus shows that hydrodynamic effects play a key role in diffusive transport through narrow channels and should be included in theoretical and numerical models.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1707815114</identifier><identifier>PMID: 28831004</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Brownian motion ; Channels ; Computer simulation ; Diffusion ; Diffusion effects ; Diffusivity ; Fluid mechanics ; Impact analysis ; Mathematical models ; Microchannels ; Neck ; Numerical analysis ; Physical Sciences ; Porosity ; Studies ; Transport ; Zeolites</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-09, Vol.114 (36), p.9564-9569</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Sep 5, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-503eb47fbf43c2c430d052210ca0e5eaf08130c01189c5a2a6916c35edc579f93</citedby><cites>FETCH-LOGICAL-c509t-503eb47fbf43c2c430d052210ca0e5eaf08130c01189c5a2a6916c35edc579f93</cites><orcidid>0000-0001-9558-6021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26487606$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26487606$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27926,27927,53793,53795,58019,58252</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28831004$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Xiang</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Li, Yunyun</creatorcontrib><creatorcontrib>Marchesoni, Fabio</creatorcontrib><creatorcontrib>Hänggi, Peter</creatorcontrib><creatorcontrib>Zhang, H. P.</creatorcontrib><title>Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In the absence of advection, confined diffusion characterizes transport in many natural and artificial devices, such as ionic channels, zeolites, and nanopores. While extensive theoretical and numerical studies on this subject have produced many important predictions, experimental verifications of the predictions are rare. Here, we experimentally measure colloidal diffusion times in microchannels with periodically varying width and contrast results with predictions from the Fick–Jacobs theory and Brownian dynamics simulation. While the theory and simulation correctly predict the entropic effect of the varying channel width, they fail to account for hydrodynamic effects, which include both an overall decrease and a spatial variation of diffusivity in channels. Neglecting such hydrodynamic effects, the theory and simulation underestimate the mean and standard deviation of first passage times by 40% in channels with a neck width twice the particle diameter. We further show that the validity of the Fick–Jacobs theory can be restored by reformulating it in terms of the experimentally measured diffusivity. Our work thus shows that hydrodynamic effects play a key role in diffusive transport through narrow channels and should be included in theoretical and numerical models.</description><subject>Brownian motion</subject><subject>Channels</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Diffusion effects</subject><subject>Diffusivity</subject><subject>Fluid mechanics</subject><subject>Impact analysis</subject><subject>Mathematical models</subject><subject>Microchannels</subject><subject>Neck</subject><subject>Numerical analysis</subject><subject>Physical Sciences</subject><subject>Porosity</subject><subject>Studies</subject><subject>Transport</subject><subject>Zeolites</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkc1r3DAQxUVpaTZpzz21GHrJxcmM9WHpUiihSQqBXJqz0MpSosUrbSU7sP99ZTYfbU9i3vz0ZoZHyCeEM4Senu-iKWfYQy-RI7I3ZIWgsBVMwVuyAuj6VrKOHZHjUjYAoLiE9-Sok5IiAFuR2-v9kNOwj2YbbGPi0Lg45bSrhfPe2ak0KTY2jWMKgxmbIXg_l1C1sMg5z_dmckNjH0yMbiwfyDtvxuI-Pr0n5O7yx6-L6_bm9urnxfeb1nJQU8uBujXr_dozajvLKAzAuw7BGnDcGQ8SKVhAlMpy0xmhUFjK3WB5r7yiJ-TbwXc3r7dVXbY2o97lsDV5r5MJ-t9ODA_6Pj1qzhUTUlSD0yeDnH7Prkx6G4p142iiS3PRqCj2yJhaZn39D92kOcd6XqWYYJQqKit1fqBsTqVk51-WQdBLWHoJS7-GVX98-fuGF_45nQp8PgCbMqX82hdM9gIE_QP3pprh</recordid><startdate>20170905</startdate><enddate>20170905</enddate><creator>Yang, Xiang</creator><creator>Liu, Chang</creator><creator>Li, Yunyun</creator><creator>Marchesoni, Fabio</creator><creator>Hänggi, Peter</creator><creator>Zhang, H. P.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9558-6021</orcidid></search><sort><creationdate>20170905</creationdate><title>Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels</title><author>Yang, Xiang ; Liu, Chang ; Li, Yunyun ; Marchesoni, Fabio ; Hänggi, Peter ; Zhang, H. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-503eb47fbf43c2c430d052210ca0e5eaf08130c01189c5a2a6916c35edc579f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brownian motion</topic><topic>Channels</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Diffusion effects</topic><topic>Diffusivity</topic><topic>Fluid mechanics</topic><topic>Impact analysis</topic><topic>Mathematical models</topic><topic>Microchannels</topic><topic>Neck</topic><topic>Numerical analysis</topic><topic>Physical Sciences</topic><topic>Porosity</topic><topic>Studies</topic><topic>Transport</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xiang</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Li, Yunyun</creatorcontrib><creatorcontrib>Marchesoni, Fabio</creatorcontrib><creatorcontrib>Hänggi, Peter</creatorcontrib><creatorcontrib>Zhang, H. P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xiang</au><au>Liu, Chang</au><au>Li, Yunyun</au><au>Marchesoni, Fabio</au><au>Hänggi, Peter</au><au>Zhang, H. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-09-05</date><risdate>2017</risdate><volume>114</volume><issue>36</issue><spage>9564</spage><epage>9569</epage><pages>9564-9569</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In the absence of advection, confined diffusion characterizes transport in many natural and artificial devices, such as ionic channels, zeolites, and nanopores. While extensive theoretical and numerical studies on this subject have produced many important predictions, experimental verifications of the predictions are rare. Here, we experimentally measure colloidal diffusion times in microchannels with periodically varying width and contrast results with predictions from the Fick–Jacobs theory and Brownian dynamics simulation. While the theory and simulation correctly predict the entropic effect of the varying channel width, they fail to account for hydrodynamic effects, which include both an overall decrease and a spatial variation of diffusivity in channels. Neglecting such hydrodynamic effects, the theory and simulation underestimate the mean and standard deviation of first passage times by 40% in channels with a neck width twice the particle diameter. We further show that the validity of the Fick–Jacobs theory can be restored by reformulating it in terms of the experimentally measured diffusivity. Our work thus shows that hydrodynamic effects play a key role in diffusive transport through narrow channels and should be included in theoretical and numerical models.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28831004</pmid><doi>10.1073/pnas.1707815114</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9558-6021</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-09, Vol.114 (36), p.9564-9569
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5594686
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Brownian motion
Channels
Computer simulation
Diffusion
Diffusion effects
Diffusivity
Fluid mechanics
Impact analysis
Mathematical models
Microchannels
Neck
Numerical analysis
Physical Sciences
Porosity
Studies
Transport
Zeolites
title Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20and%20entropic%20effects%20on%20colloidal%20diffusion%20in%20corrugated%20channels&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yang,%20Xiang&rft.date=2017-09-05&rft.volume=114&rft.issue=36&rft.spage=9564&rft.epage=9569&rft.pages=9564-9569&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1707815114&rft_dat=%3Cjstor_pubme%3E26487606%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946433938&rft_id=info:pmid/28831004&rft_jstor_id=26487606&rfr_iscdi=true