Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels
In the absence of advection, confined diffusion characterizes transport in many natural and artificial devices, such as ionic channels, zeolites, and nanopores. While extensive theoretical and numerical studies on this subject have produced many important predictions, experimental verifications of t...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-09, Vol.114 (36), p.9564-9569 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9569 |
---|---|
container_issue | 36 |
container_start_page | 9564 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Yang, Xiang Liu, Chang Li, Yunyun Marchesoni, Fabio Hänggi, Peter Zhang, H. P. |
description | In the absence of advection, confined diffusion characterizes transport in many natural and artificial devices, such as ionic channels, zeolites, and nanopores. While extensive theoretical and numerical studies on this subject have produced many important predictions, experimental verifications of the predictions are rare. Here, we experimentally measure colloidal diffusion times in microchannels with periodically varying width and contrast results with predictions from the Fick–Jacobs theory and Brownian dynamics simulation. While the theory and simulation correctly predict the entropic effect of the varying channel width, they fail to account for hydrodynamic effects, which include both an overall decrease and a spatial variation of diffusivity in channels. Neglecting such hydrodynamic effects, the theory and simulation underestimate the mean and standard deviation of first passage times by 40% in channels with a neck width twice the particle diameter. We further show that the validity of the Fick–Jacobs theory can be restored by reformulating it in terms of the experimentally measured diffusivity. Our work thus shows that hydrodynamic effects play a key role in diffusive transport through narrow channels and should be included in theoretical and numerical models. |
doi_str_mv | 10.1073/pnas.1707815114 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5594686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26487606</jstor_id><sourcerecordid>26487606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-503eb47fbf43c2c430d052210ca0e5eaf08130c01189c5a2a6916c35edc579f93</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpaTZpzz21GHrJxcmM9WHpUiihSQqBXJqz0MpSosUrbSU7sP99ZTYfbU9i3vz0ZoZHyCeEM4Senu-iKWfYQy-RI7I3ZIWgsBVMwVuyAuj6VrKOHZHjUjYAoLiE9-Sok5IiAFuR2-v9kNOwj2YbbGPi0Lg45bSrhfPe2ak0KTY2jWMKgxmbIXg_l1C1sMg5z_dmckNjH0yMbiwfyDtvxuI-Pr0n5O7yx6-L6_bm9urnxfeb1nJQU8uBujXr_dozajvLKAzAuw7BGnDcGQ8SKVhAlMpy0xmhUFjK3WB5r7yiJ-TbwXc3r7dVXbY2o97lsDV5r5MJ-t9ODA_6Pj1qzhUTUlSD0yeDnH7Prkx6G4p142iiS3PRqCj2yJhaZn39D92kOcd6XqWYYJQqKit1fqBsTqVk51-WQdBLWHoJS7-GVX98-fuGF_45nQp8PgCbMqX82hdM9gIE_QP3pprh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946433938</pqid></control><display><type>article</type><title>Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Xiang ; Liu, Chang ; Li, Yunyun ; Marchesoni, Fabio ; Hänggi, Peter ; Zhang, H. P.</creator><creatorcontrib>Yang, Xiang ; Liu, Chang ; Li, Yunyun ; Marchesoni, Fabio ; Hänggi, Peter ; Zhang, H. P.</creatorcontrib><description>In the absence of advection, confined diffusion characterizes transport in many natural and artificial devices, such as ionic channels, zeolites, and nanopores. While extensive theoretical and numerical studies on this subject have produced many important predictions, experimental verifications of the predictions are rare. Here, we experimentally measure colloidal diffusion times in microchannels with periodically varying width and contrast results with predictions from the Fick–Jacobs theory and Brownian dynamics simulation. While the theory and simulation correctly predict the entropic effect of the varying channel width, they fail to account for hydrodynamic effects, which include both an overall decrease and a spatial variation of diffusivity in channels. Neglecting such hydrodynamic effects, the theory and simulation underestimate the mean and standard deviation of first passage times by 40% in channels with a neck width twice the particle diameter. We further show that the validity of the Fick–Jacobs theory can be restored by reformulating it in terms of the experimentally measured diffusivity. Our work thus shows that hydrodynamic effects play a key role in diffusive transport through narrow channels and should be included in theoretical and numerical models.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1707815114</identifier><identifier>PMID: 28831004</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Brownian motion ; Channels ; Computer simulation ; Diffusion ; Diffusion effects ; Diffusivity ; Fluid mechanics ; Impact analysis ; Mathematical models ; Microchannels ; Neck ; Numerical analysis ; Physical Sciences ; Porosity ; Studies ; Transport ; Zeolites</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-09, Vol.114 (36), p.9564-9569</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Sep 5, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-503eb47fbf43c2c430d052210ca0e5eaf08130c01189c5a2a6916c35edc579f93</citedby><cites>FETCH-LOGICAL-c509t-503eb47fbf43c2c430d052210ca0e5eaf08130c01189c5a2a6916c35edc579f93</cites><orcidid>0000-0001-9558-6021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26487606$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26487606$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27926,27927,53793,53795,58019,58252</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28831004$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Xiang</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Li, Yunyun</creatorcontrib><creatorcontrib>Marchesoni, Fabio</creatorcontrib><creatorcontrib>Hänggi, Peter</creatorcontrib><creatorcontrib>Zhang, H. P.</creatorcontrib><title>Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In the absence of advection, confined diffusion characterizes transport in many natural and artificial devices, such as ionic channels, zeolites, and nanopores. While extensive theoretical and numerical studies on this subject have produced many important predictions, experimental verifications of the predictions are rare. Here, we experimentally measure colloidal diffusion times in microchannels with periodically varying width and contrast results with predictions from the Fick–Jacobs theory and Brownian dynamics simulation. While the theory and simulation correctly predict the entropic effect of the varying channel width, they fail to account for hydrodynamic effects, which include both an overall decrease and a spatial variation of diffusivity in channels. Neglecting such hydrodynamic effects, the theory and simulation underestimate the mean and standard deviation of first passage times by 40% in channels with a neck width twice the particle diameter. We further show that the validity of the Fick–Jacobs theory can be restored by reformulating it in terms of the experimentally measured diffusivity. Our work thus shows that hydrodynamic effects play a key role in diffusive transport through narrow channels and should be included in theoretical and numerical models.</description><subject>Brownian motion</subject><subject>Channels</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Diffusion effects</subject><subject>Diffusivity</subject><subject>Fluid mechanics</subject><subject>Impact analysis</subject><subject>Mathematical models</subject><subject>Microchannels</subject><subject>Neck</subject><subject>Numerical analysis</subject><subject>Physical Sciences</subject><subject>Porosity</subject><subject>Studies</subject><subject>Transport</subject><subject>Zeolites</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkc1r3DAQxUVpaTZpzz21GHrJxcmM9WHpUiihSQqBXJqz0MpSosUrbSU7sP99ZTYfbU9i3vz0ZoZHyCeEM4Senu-iKWfYQy-RI7I3ZIWgsBVMwVuyAuj6VrKOHZHjUjYAoLiE9-Sok5IiAFuR2-v9kNOwj2YbbGPi0Lg45bSrhfPe2ak0KTY2jWMKgxmbIXg_l1C1sMg5z_dmckNjH0yMbiwfyDtvxuI-Pr0n5O7yx6-L6_bm9urnxfeb1nJQU8uBujXr_dozajvLKAzAuw7BGnDcGQ8SKVhAlMpy0xmhUFjK3WB5r7yiJ-TbwXc3r7dVXbY2o97lsDV5r5MJ-t9ODA_6Pj1qzhUTUlSD0yeDnH7Prkx6G4p142iiS3PRqCj2yJhaZn39D92kOcd6XqWYYJQqKit1fqBsTqVk51-WQdBLWHoJS7-GVX98-fuGF_45nQp8PgCbMqX82hdM9gIE_QP3pprh</recordid><startdate>20170905</startdate><enddate>20170905</enddate><creator>Yang, Xiang</creator><creator>Liu, Chang</creator><creator>Li, Yunyun</creator><creator>Marchesoni, Fabio</creator><creator>Hänggi, Peter</creator><creator>Zhang, H. P.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9558-6021</orcidid></search><sort><creationdate>20170905</creationdate><title>Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels</title><author>Yang, Xiang ; Liu, Chang ; Li, Yunyun ; Marchesoni, Fabio ; Hänggi, Peter ; Zhang, H. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-503eb47fbf43c2c430d052210ca0e5eaf08130c01189c5a2a6916c35edc579f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brownian motion</topic><topic>Channels</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Diffusion effects</topic><topic>Diffusivity</topic><topic>Fluid mechanics</topic><topic>Impact analysis</topic><topic>Mathematical models</topic><topic>Microchannels</topic><topic>Neck</topic><topic>Numerical analysis</topic><topic>Physical Sciences</topic><topic>Porosity</topic><topic>Studies</topic><topic>Transport</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xiang</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Li, Yunyun</creatorcontrib><creatorcontrib>Marchesoni, Fabio</creatorcontrib><creatorcontrib>Hänggi, Peter</creatorcontrib><creatorcontrib>Zhang, H. P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xiang</au><au>Liu, Chang</au><au>Li, Yunyun</au><au>Marchesoni, Fabio</au><au>Hänggi, Peter</au><au>Zhang, H. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-09-05</date><risdate>2017</risdate><volume>114</volume><issue>36</issue><spage>9564</spage><epage>9569</epage><pages>9564-9569</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In the absence of advection, confined diffusion characterizes transport in many natural and artificial devices, such as ionic channels, zeolites, and nanopores. While extensive theoretical and numerical studies on this subject have produced many important predictions, experimental verifications of the predictions are rare. Here, we experimentally measure colloidal diffusion times in microchannels with periodically varying width and contrast results with predictions from the Fick–Jacobs theory and Brownian dynamics simulation. While the theory and simulation correctly predict the entropic effect of the varying channel width, they fail to account for hydrodynamic effects, which include both an overall decrease and a spatial variation of diffusivity in channels. Neglecting such hydrodynamic effects, the theory and simulation underestimate the mean and standard deviation of first passage times by 40% in channels with a neck width twice the particle diameter. We further show that the validity of the Fick–Jacobs theory can be restored by reformulating it in terms of the experimentally measured diffusivity. Our work thus shows that hydrodynamic effects play a key role in diffusive transport through narrow channels and should be included in theoretical and numerical models.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28831004</pmid><doi>10.1073/pnas.1707815114</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9558-6021</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-09, Vol.114 (36), p.9564-9569 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5594686 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Brownian motion Channels Computer simulation Diffusion Diffusion effects Diffusivity Fluid mechanics Impact analysis Mathematical models Microchannels Neck Numerical analysis Physical Sciences Porosity Studies Transport Zeolites |
title | Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20and%20entropic%20effects%20on%20colloidal%20diffusion%20in%20corrugated%20channels&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yang,%20Xiang&rft.date=2017-09-05&rft.volume=114&rft.issue=36&rft.spage=9564&rft.epage=9569&rft.pages=9564-9569&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1707815114&rft_dat=%3Cjstor_pubme%3E26487606%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946433938&rft_id=info:pmid/28831004&rft_jstor_id=26487606&rfr_iscdi=true |