Mutations in eIF5B Confer Thermosensitive and Pleiotropic Phenotypes via Translation Defects in Arabidopsis thaliana

The conserved eukaryotic translation initiation factor 5B, eIF5B, is a GTPase that acts late in translation initiation. We found that an Arabidopsis thaliana mutant sensitive to hot temperatures 3 (hot3-1), which behaves as the wild type in the absence of stress but is unable to acclimate to high te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2017-08, Vol.29 (8), p.1952-1969
Hauptverfasser: Zhang, Liyuan, Liu, Xinye, Gaikwad, Kishor, Kou, Xiaoxia, Wang, Fei, Tian, Xuejun, Xin, Mingming, Ni, Zhongfu, Sun, Qixin, Peng, Huiru, Vierling, Elizabeth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1969
container_issue 8
container_start_page 1952
container_title The Plant cell
container_volume 29
creator Zhang, Liyuan
Liu, Xinye
Gaikwad, Kishor
Kou, Xiaoxia
Wang, Fei
Tian, Xuejun
Xin, Mingming
Ni, Zhongfu
Sun, Qixin
Peng, Huiru
Vierling, Elizabeth
description The conserved eukaryotic translation initiation factor 5B, eIF5B, is a GTPase that acts late in translation initiation. We found that an Arabidopsis thaliana mutant sensitive to hot temperatures 3 (hot3-1), which behaves as the wild type in the absence of stress but is unable to acclimate to high temperature, carries a missense mutation in the eIF5B1 gene (At1g76810), producing a temperature sensitive protein. A more severe, T-DNA insertion allele (hot3-2) causes pleiotropic developmental phenotypes. Surprisingly, Arabidopsis has three other eIF5B genes that do not substitute for eIF5B1; two of these appear to be in the process of pseudogenization. Polysome profiling and RNA-seq analysis of hot3-1 plants show delayed recovery of polysomes after heat stress and reduced translational efficiency (TE) of a subset of stress protective proteins, demonstrating the critical role of translational control early in heat acclimation. Plants carrying the severe hot3-2 allele show decreased TE of auxin-regulated, ribosome-related, and electron transport genes, even under optimal growth conditions. The hot3-2 data suggest that disrupting specific eIF5B interactions on the ribosome can, directly or indirectly, differentially affect translation. Thus, modulating eIF5B interactions could be another mechanism of gene-specific translational control.
doi_str_mv 10.1105/tpc.16.00808
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5590492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90012853</jstor_id><sourcerecordid>90012853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-189b90c013c4d2502e5c7ab64080942349a8440ef11052b43f2b7e745538bcee3</originalsourceid><addsrcrecordid>eNpdkc9v0zAYhiMEYr-4cQVZ4sJhKZ8dO4kvSKMwmDS0HYrEzXLcL9RVame2U2n__bx2q4CTLX2PHn-v36J4S2FGKYhPaTQzWs8AWmhfFMdUVKxksv39Mt-BQ8lrQY-KkxjXAEAbKl8XR6zNMK3EcZF-Tkkn610k1hG8uhRfyNy7HgNZrDBsfEQXbbJbJNotye2A1qfgR2vI7QqdT_cjRrK1miyCdnHYuchX7NGknfIi6M4u_RhtJGmlB6udPite9XqI-ObpPC1-XX5bzH-U1zffr-YX16XhFU8lbWUnwQCtDF8yAQyFaXRX8xxVclZxqVvOAfvHf2Adr3rWNdhwIaq2M4jVafF57x2nboNLgy4FPagx2I0O98prq_6dOLtSf_xWCSGBS5YFH58Ewd9NGJPa2GhwGLRDP0VFJZP5bdmKjH74D137KbgcTzGAWoJsWp6p8z1lgo8xYH9YhoJ6jKFynYrWaldnxt__HeAAP_eXgXd7YB2TD4e5zE2zvFT1ALDfpf0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006909784</pqid></control><display><type>article</type><title>Mutations in eIF5B Confer Thermosensitive and Pleiotropic Phenotypes via Translation Defects in Arabidopsis thaliana</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Liyuan ; Liu, Xinye ; Gaikwad, Kishor ; Kou, Xiaoxia ; Wang, Fei ; Tian, Xuejun ; Xin, Mingming ; Ni, Zhongfu ; Sun, Qixin ; Peng, Huiru ; Vierling, Elizabeth</creator><creatorcontrib>Zhang, Liyuan ; Liu, Xinye ; Gaikwad, Kishor ; Kou, Xiaoxia ; Wang, Fei ; Tian, Xuejun ; Xin, Mingming ; Ni, Zhongfu ; Sun, Qixin ; Peng, Huiru ; Vierling, Elizabeth</creatorcontrib><description>The conserved eukaryotic translation initiation factor 5B, eIF5B, is a GTPase that acts late in translation initiation. We found that an Arabidopsis thaliana mutant sensitive to hot temperatures 3 (hot3-1), which behaves as the wild type in the absence of stress but is unable to acclimate to high temperature, carries a missense mutation in the eIF5B1 gene (At1g76810), producing a temperature sensitive protein. A more severe, T-DNA insertion allele (hot3-2) causes pleiotropic developmental phenotypes. Surprisingly, Arabidopsis has three other eIF5B genes that do not substitute for eIF5B1; two of these appear to be in the process of pseudogenization. Polysome profiling and RNA-seq analysis of hot3-1 plants show delayed recovery of polysomes after heat stress and reduced translational efficiency (TE) of a subset of stress protective proteins, demonstrating the critical role of translational control early in heat acclimation. Plants carrying the severe hot3-2 allele show decreased TE of auxin-regulated, ribosome-related, and electron transport genes, even under optimal growth conditions. The hot3-2 data suggest that disrupting specific eIF5B interactions on the ribosome can, directly or indirectly, differentially affect translation. Thus, modulating eIF5B interactions could be another mechanism of gene-specific translational control.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.16.00808</identifier><identifier>PMID: 28808135</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Acclimation ; Acclimatization ; Alleles ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Deoxyribonucleic acid ; DNA ; DNA, Bacterial - genetics ; Electron transport ; Electron Transport - genetics ; Eukaryotic Initiation Factors - genetics ; Eukaryotic Initiation Factors - metabolism ; Gene Expression Regulation, Plant ; Genes ; Genetic Complementation Test ; Genetic Pleiotropy ; Growth conditions ; Guanosine triphosphatases ; Heat ; Heat stress ; Heat tolerance ; Heat-Shock Response - genetics ; High temperature ; Indoleacetic Acids - metabolism ; Initiation factor eIF-5B ; Missense mutation ; mRNA ; Mutagenesis, Insertional ; Mutation ; Mutation - genetics ; Phenotype ; Phylogeny ; Plant Development ; Polyribosomes ; Polyribosomes - metabolism ; Protein Biosynthesis - genetics ; Proteins ; Ribonucleic acid ; RNA ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Sequence Homology, Amino Acid ; T-DNA ; Temperature ; Thermotolerance ; Time Factors</subject><ispartof>The Plant cell, 2017-08, Vol.29 (8), p.1952-1969</ispartof><rights>2017 American Society of Plant Biologists</rights><rights>2017 American Society of Plant Biologists. All rights reserved.</rights><rights>Copyright American Society of Plant Biologists Aug 2017</rights><rights>2017 American Society of Plant Biologists. All rights reserved. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-189b90c013c4d2502e5c7ab64080942349a8440ef11052b43f2b7e745538bcee3</citedby><orcidid>0000-0002-3591-4852 ; 0000-0002-6475-1554 ; 0000-0003-0189-4440 ; 0000-0002-0484-3844 ; 0000-0001-7811-8437 ; 0000-0002-0066-4881 ; 0000-0002-3751-7746 ; 0000-0002-7339-7374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90012853$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90012853$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28808135$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Liyuan</creatorcontrib><creatorcontrib>Liu, Xinye</creatorcontrib><creatorcontrib>Gaikwad, Kishor</creatorcontrib><creatorcontrib>Kou, Xiaoxia</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Tian, Xuejun</creatorcontrib><creatorcontrib>Xin, Mingming</creatorcontrib><creatorcontrib>Ni, Zhongfu</creatorcontrib><creatorcontrib>Sun, Qixin</creatorcontrib><creatorcontrib>Peng, Huiru</creatorcontrib><creatorcontrib>Vierling, Elizabeth</creatorcontrib><title>Mutations in eIF5B Confer Thermosensitive and Pleiotropic Phenotypes via Translation Defects in Arabidopsis thaliana</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>The conserved eukaryotic translation initiation factor 5B, eIF5B, is a GTPase that acts late in translation initiation. We found that an Arabidopsis thaliana mutant sensitive to hot temperatures 3 (hot3-1), which behaves as the wild type in the absence of stress but is unable to acclimate to high temperature, carries a missense mutation in the eIF5B1 gene (At1g76810), producing a temperature sensitive protein. A more severe, T-DNA insertion allele (hot3-2) causes pleiotropic developmental phenotypes. Surprisingly, Arabidopsis has three other eIF5B genes that do not substitute for eIF5B1; two of these appear to be in the process of pseudogenization. Polysome profiling and RNA-seq analysis of hot3-1 plants show delayed recovery of polysomes after heat stress and reduced translational efficiency (TE) of a subset of stress protective proteins, demonstrating the critical role of translational control early in heat acclimation. Plants carrying the severe hot3-2 allele show decreased TE of auxin-regulated, ribosome-related, and electron transport genes, even under optimal growth conditions. The hot3-2 data suggest that disrupting specific eIF5B interactions on the ribosome can, directly or indirectly, differentially affect translation. Thus, modulating eIF5B interactions could be another mechanism of gene-specific translational control.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Alleles</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Bacterial - genetics</subject><subject>Electron transport</subject><subject>Electron Transport - genetics</subject><subject>Eukaryotic Initiation Factors - genetics</subject><subject>Eukaryotic Initiation Factors - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genetic Complementation Test</subject><subject>Genetic Pleiotropy</subject><subject>Growth conditions</subject><subject>Guanosine triphosphatases</subject><subject>Heat</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>Heat-Shock Response - genetics</subject><subject>High temperature</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Initiation factor eIF-5B</subject><subject>Missense mutation</subject><subject>mRNA</subject><subject>Mutagenesis, Insertional</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Phenotype</subject><subject>Phylogeny</subject><subject>Plant Development</subject><subject>Polyribosomes</subject><subject>Polyribosomes - metabolism</subject><subject>Protein Biosynthesis - genetics</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>T-DNA</subject><subject>Temperature</subject><subject>Thermotolerance</subject><subject>Time Factors</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc9v0zAYhiMEYr-4cQVZ4sJhKZ8dO4kvSKMwmDS0HYrEzXLcL9RVame2U2n__bx2q4CTLX2PHn-v36J4S2FGKYhPaTQzWs8AWmhfFMdUVKxksv39Mt-BQ8lrQY-KkxjXAEAbKl8XR6zNMK3EcZF-Tkkn610k1hG8uhRfyNy7HgNZrDBsfEQXbbJbJNotye2A1qfgR2vI7QqdT_cjRrK1miyCdnHYuchX7NGknfIi6M4u_RhtJGmlB6udPite9XqI-ObpPC1-XX5bzH-U1zffr-YX16XhFU8lbWUnwQCtDF8yAQyFaXRX8xxVclZxqVvOAfvHf2Adr3rWNdhwIaq2M4jVafF57x2nboNLgy4FPagx2I0O98prq_6dOLtSf_xWCSGBS5YFH58Ewd9NGJPa2GhwGLRDP0VFJZP5bdmKjH74D137KbgcTzGAWoJsWp6p8z1lgo8xYH9YhoJ6jKFynYrWaldnxt__HeAAP_eXgXd7YB2TD4e5zE2zvFT1ALDfpf0</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Zhang, Liyuan</creator><creator>Liu, Xinye</creator><creator>Gaikwad, Kishor</creator><creator>Kou, Xiaoxia</creator><creator>Wang, Fei</creator><creator>Tian, Xuejun</creator><creator>Xin, Mingming</creator><creator>Ni, Zhongfu</creator><creator>Sun, Qixin</creator><creator>Peng, Huiru</creator><creator>Vierling, Elizabeth</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3591-4852</orcidid><orcidid>https://orcid.org/0000-0002-6475-1554</orcidid><orcidid>https://orcid.org/0000-0003-0189-4440</orcidid><orcidid>https://orcid.org/0000-0002-0484-3844</orcidid><orcidid>https://orcid.org/0000-0001-7811-8437</orcidid><orcidid>https://orcid.org/0000-0002-0066-4881</orcidid><orcidid>https://orcid.org/0000-0002-3751-7746</orcidid><orcidid>https://orcid.org/0000-0002-7339-7374</orcidid></search><sort><creationdate>20170801</creationdate><title>Mutations in eIF5B Confer Thermosensitive and Pleiotropic Phenotypes via Translation Defects in Arabidopsis thaliana</title><author>Zhang, Liyuan ; Liu, Xinye ; Gaikwad, Kishor ; Kou, Xiaoxia ; Wang, Fei ; Tian, Xuejun ; Xin, Mingming ; Ni, Zhongfu ; Sun, Qixin ; Peng, Huiru ; Vierling, Elizabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-189b90c013c4d2502e5c7ab64080942349a8440ef11052b43f2b7e745538bcee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Alleles</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Bacterial - genetics</topic><topic>Electron transport</topic><topic>Electron Transport - genetics</topic><topic>Eukaryotic Initiation Factors - genetics</topic><topic>Eukaryotic Initiation Factors - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genetic Complementation Test</topic><topic>Genetic Pleiotropy</topic><topic>Growth conditions</topic><topic>Guanosine triphosphatases</topic><topic>Heat</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>Heat-Shock Response - genetics</topic><topic>High temperature</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Initiation factor eIF-5B</topic><topic>Missense mutation</topic><topic>mRNA</topic><topic>Mutagenesis, Insertional</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Phenotype</topic><topic>Phylogeny</topic><topic>Plant Development</topic><topic>Polyribosomes</topic><topic>Polyribosomes - metabolism</topic><topic>Protein Biosynthesis - genetics</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>T-DNA</topic><topic>Temperature</topic><topic>Thermotolerance</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Liyuan</creatorcontrib><creatorcontrib>Liu, Xinye</creatorcontrib><creatorcontrib>Gaikwad, Kishor</creatorcontrib><creatorcontrib>Kou, Xiaoxia</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Tian, Xuejun</creatorcontrib><creatorcontrib>Xin, Mingming</creatorcontrib><creatorcontrib>Ni, Zhongfu</creatorcontrib><creatorcontrib>Sun, Qixin</creatorcontrib><creatorcontrib>Peng, Huiru</creatorcontrib><creatorcontrib>Vierling, Elizabeth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Liyuan</au><au>Liu, Xinye</au><au>Gaikwad, Kishor</au><au>Kou, Xiaoxia</au><au>Wang, Fei</au><au>Tian, Xuejun</au><au>Xin, Mingming</au><au>Ni, Zhongfu</au><au>Sun, Qixin</au><au>Peng, Huiru</au><au>Vierling, Elizabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutations in eIF5B Confer Thermosensitive and Pleiotropic Phenotypes via Translation Defects in Arabidopsis thaliana</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>29</volume><issue>8</issue><spage>1952</spage><epage>1969</epage><pages>1952-1969</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>The conserved eukaryotic translation initiation factor 5B, eIF5B, is a GTPase that acts late in translation initiation. We found that an Arabidopsis thaliana mutant sensitive to hot temperatures 3 (hot3-1), which behaves as the wild type in the absence of stress but is unable to acclimate to high temperature, carries a missense mutation in the eIF5B1 gene (At1g76810), producing a temperature sensitive protein. A more severe, T-DNA insertion allele (hot3-2) causes pleiotropic developmental phenotypes. Surprisingly, Arabidopsis has three other eIF5B genes that do not substitute for eIF5B1; two of these appear to be in the process of pseudogenization. Polysome profiling and RNA-seq analysis of hot3-1 plants show delayed recovery of polysomes after heat stress and reduced translational efficiency (TE) of a subset of stress protective proteins, demonstrating the critical role of translational control early in heat acclimation. Plants carrying the severe hot3-2 allele show decreased TE of auxin-regulated, ribosome-related, and electron transport genes, even under optimal growth conditions. The hot3-2 data suggest that disrupting specific eIF5B interactions on the ribosome can, directly or indirectly, differentially affect translation. Thus, modulating eIF5B interactions could be another mechanism of gene-specific translational control.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>28808135</pmid><doi>10.1105/tpc.16.00808</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3591-4852</orcidid><orcidid>https://orcid.org/0000-0002-6475-1554</orcidid><orcidid>https://orcid.org/0000-0003-0189-4440</orcidid><orcidid>https://orcid.org/0000-0002-0484-3844</orcidid><orcidid>https://orcid.org/0000-0001-7811-8437</orcidid><orcidid>https://orcid.org/0000-0002-0066-4881</orcidid><orcidid>https://orcid.org/0000-0002-3751-7746</orcidid><orcidid>https://orcid.org/0000-0002-7339-7374</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2017-08, Vol.29 (8), p.1952-1969
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5590492
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Acclimation
Acclimatization
Alleles
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Deoxyribonucleic acid
DNA
DNA, Bacterial - genetics
Electron transport
Electron Transport - genetics
Eukaryotic Initiation Factors - genetics
Eukaryotic Initiation Factors - metabolism
Gene Expression Regulation, Plant
Genes
Genetic Complementation Test
Genetic Pleiotropy
Growth conditions
Guanosine triphosphatases
Heat
Heat stress
Heat tolerance
Heat-Shock Response - genetics
High temperature
Indoleacetic Acids - metabolism
Initiation factor eIF-5B
Missense mutation
mRNA
Mutagenesis, Insertional
Mutation
Mutation - genetics
Phenotype
Phylogeny
Plant Development
Polyribosomes
Polyribosomes - metabolism
Protein Biosynthesis - genetics
Proteins
Ribonucleic acid
RNA
RNA, Messenger - genetics
RNA, Messenger - metabolism
Sequence Homology, Amino Acid
T-DNA
Temperature
Thermotolerance
Time Factors
title Mutations in eIF5B Confer Thermosensitive and Pleiotropic Phenotypes via Translation Defects in Arabidopsis thaliana
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutations%20in%20eIF5B%20Confer%20Thermosensitive%20and%20Pleiotropic%20Phenotypes%20via%20Translation%20Defects%20in%20Arabidopsis%20thaliana&rft.jtitle=The%20Plant%20cell&rft.au=Zhang,%20Liyuan&rft.date=2017-08-01&rft.volume=29&rft.issue=8&rft.spage=1952&rft.epage=1969&rft.pages=1952-1969&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.16.00808&rft_dat=%3Cjstor_pubme%3E90012853%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2006909784&rft_id=info:pmid/28808135&rft_jstor_id=90012853&rfr_iscdi=true