A matrix-based approach to solving the inverse Frobenius–Perron problem using sequences of density functions of stochastically perturbed dynamical systems

•The paper introduces new method of reconstructing an unknown one-dimensional transformation that is subject to constantly applied stochastic perturbations based on temporal sequences of probability density functions.•The main assumption is that the one-dimensional transformation that generated the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2018-01, Vol.54, p.248-266
Hauptverfasser: Nie, Xiaokai, Coca, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 266
container_issue
container_start_page 248
container_title Communications in nonlinear science & numerical simulation
container_volume 54
creator Nie, Xiaokai
Coca, Daniel
description •The paper introduces new method of reconstructing an unknown one-dimensional transformation that is subject to constantly applied stochastic perturbations based on temporal sequences of probability density functions.•The main assumption is that the one-dimensional transformation that generated the densities is piecewise-linear, semi-Markov.•A matrix approximation of the transfer operator associated with the stochastically perturbed transformation, which forms the basis for the reconstruction algorithm, is introduced.•A practical algorithm to estimate the matrix-representation of the Frobenius-Perron operator associated with the unperturbed transformation and reconstruct the onedimensional map is proposed.•The algorithm is extended to nonlinear continuous maps.•Numerical simulation examples are provided to demonstrate the performance of the approach and to compare it with that of an existing algorithm. The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.
doi_str_mv 10.1016/j.cnsns.2017.05.011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5589148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570417301752</els_id><sourcerecordid>1984752599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-a2661187ac38c8a036cd6ce41dfc8c4f2a6b324612dceb0b00b996e2e44029123</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEoqXwBEjIEhs2Cbbj_HgBUlVRQKoEC1hbjjPp9VViB49zRXa8A1uejifB6S0VsGBle_ydGR-fLHvKaMEoq1_uC-PQYcEpawpaFZSxe9kpa5s2b3gj7qc9pU1eNVScZI8Q9zSpZCUeZidccinT6TT7cU4mHYP9mncaoSd6noPXZkeiJ-jHg3XXJO6AWHeAgEAug-_A2QV_fvv-EULwjiRBN8JEFtxghC8LOANI_EB6cGjjSobFmWi9uyli9GanMVqjx3ElM4S4hC7N7lenp61KcMUIEz7OHgx6RHhyu55lny_ffLp4l199ePv-4vwqN6JtYq55XbPkW5uyNa2mZW362oBg_WBaIwau667koma8N9DRjtJOyho4CEG5ZLw8y14f-85LN0GCXAx6VHOwkw6r8tqqv2-c3alrf1BV1Uom2tTgxW2D4JN9jGqyaGActQO_oGKyFU3FKykT-vwfdO-X4JI9xSlnUrKmqhJVHikTPGKA4e4xjKotfbVXN-mrLX1FK5XST6pnf_q40_yOOwGvjgCk3zxYCAqN3dLqbQATVe_tfwf8Atc-yDI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021991755</pqid></control><display><type>article</type><title>A matrix-based approach to solving the inverse Frobenius–Perron problem using sequences of density functions of stochastically perturbed dynamical systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Nie, Xiaokai ; Coca, Daniel</creator><creatorcontrib>Nie, Xiaokai ; Coca, Daniel</creatorcontrib><description>•The paper introduces new method of reconstructing an unknown one-dimensional transformation that is subject to constantly applied stochastic perturbations based on temporal sequences of probability density functions.•The main assumption is that the one-dimensional transformation that generated the densities is piecewise-linear, semi-Markov.•A matrix approximation of the transfer operator associated with the stochastically perturbed transformation, which forms the basis for the reconstruction algorithm, is introduced.•A practical algorithm to estimate the matrix-representation of the Frobenius-Perron operator associated with the unperturbed transformation and reconstruct the onedimensional map is proposed.•The algorithm is extended to nonlinear continuous maps.•Numerical simulation examples are provided to demonstrate the performance of the approach and to compare it with that of an existing algorithm. The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2017.05.011</identifier><identifier>PMID: 29299016</identifier><language>eng</language><publisher>China: Elsevier B.V</publisher><subject>Chaotic maps ; Discrete time systems ; Dynamical systems ; Inverse Frobenius–Perron problem ; Nonlinear systems ; Probability ; Probability density functions ; Research Paper</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2018-01, Vol.54, p.248-266</ispartof><rights>2017 The Authors</rights><rights>Copyright Elsevier Science Ltd. Jan 2018</rights><rights>2017 The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-a2661187ac38c8a036cd6ce41dfc8c4f2a6b324612dceb0b00b996e2e44029123</citedby><cites>FETCH-LOGICAL-c487t-a2661187ac38c8a036cd6ce41dfc8c4f2a6b324612dceb0b00b996e2e44029123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2017.05.011$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29299016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Xiaokai</creatorcontrib><creatorcontrib>Coca, Daniel</creatorcontrib><title>A matrix-based approach to solving the inverse Frobenius–Perron problem using sequences of density functions of stochastically perturbed dynamical systems</title><title>Communications in nonlinear science &amp; numerical simulation</title><addtitle>Commun Nonlinear Sci Numer Simul</addtitle><description>•The paper introduces new method of reconstructing an unknown one-dimensional transformation that is subject to constantly applied stochastic perturbations based on temporal sequences of probability density functions.•The main assumption is that the one-dimensional transformation that generated the densities is piecewise-linear, semi-Markov.•A matrix approximation of the transfer operator associated with the stochastically perturbed transformation, which forms the basis for the reconstruction algorithm, is introduced.•A practical algorithm to estimate the matrix-representation of the Frobenius-Perron operator associated with the unperturbed transformation and reconstruct the onedimensional map is proposed.•The algorithm is extended to nonlinear continuous maps.•Numerical simulation examples are provided to demonstrate the performance of the approach and to compare it with that of an existing algorithm. The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.</description><subject>Chaotic maps</subject><subject>Discrete time systems</subject><subject>Dynamical systems</subject><subject>Inverse Frobenius–Perron problem</subject><subject>Nonlinear systems</subject><subject>Probability</subject><subject>Probability density functions</subject><subject>Research Paper</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhSMEoqXwBEjIEhs2Cbbj_HgBUlVRQKoEC1hbjjPp9VViB49zRXa8A1uejifB6S0VsGBle_ydGR-fLHvKaMEoq1_uC-PQYcEpawpaFZSxe9kpa5s2b3gj7qc9pU1eNVScZI8Q9zSpZCUeZidccinT6TT7cU4mHYP9mncaoSd6noPXZkeiJ-jHg3XXJO6AWHeAgEAug-_A2QV_fvv-EULwjiRBN8JEFtxghC8LOANI_EB6cGjjSobFmWi9uyli9GanMVqjx3ElM4S4hC7N7lenp61KcMUIEz7OHgx6RHhyu55lny_ffLp4l199ePv-4vwqN6JtYq55XbPkW5uyNa2mZW362oBg_WBaIwau667koma8N9DRjtJOyho4CEG5ZLw8y14f-85LN0GCXAx6VHOwkw6r8tqqv2-c3alrf1BV1Uom2tTgxW2D4JN9jGqyaGActQO_oGKyFU3FKykT-vwfdO-X4JI9xSlnUrKmqhJVHikTPGKA4e4xjKotfbVXN-mrLX1FK5XST6pnf_q40_yOOwGvjgCk3zxYCAqN3dLqbQATVe_tfwf8Atc-yDI</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Nie, Xiaokai</creator><creator>Coca, Daniel</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><general>Center for Nonlinear Science, Peking University</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201801</creationdate><title>A matrix-based approach to solving the inverse Frobenius–Perron problem using sequences of density functions of stochastically perturbed dynamical systems</title><author>Nie, Xiaokai ; Coca, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-a2661187ac38c8a036cd6ce41dfc8c4f2a6b324612dceb0b00b996e2e44029123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chaotic maps</topic><topic>Discrete time systems</topic><topic>Dynamical systems</topic><topic>Inverse Frobenius–Perron problem</topic><topic>Nonlinear systems</topic><topic>Probability</topic><topic>Probability density functions</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Xiaokai</creatorcontrib><creatorcontrib>Coca, Daniel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Xiaokai</au><au>Coca, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A matrix-based approach to solving the inverse Frobenius–Perron problem using sequences of density functions of stochastically perturbed dynamical systems</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><addtitle>Commun Nonlinear Sci Numer Simul</addtitle><date>2018-01</date><risdate>2018</risdate><volume>54</volume><spage>248</spage><epage>266</epage><pages>248-266</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•The paper introduces new method of reconstructing an unknown one-dimensional transformation that is subject to constantly applied stochastic perturbations based on temporal sequences of probability density functions.•The main assumption is that the one-dimensional transformation that generated the densities is piecewise-linear, semi-Markov.•A matrix approximation of the transfer operator associated with the stochastically perturbed transformation, which forms the basis for the reconstruction algorithm, is introduced.•A practical algorithm to estimate the matrix-representation of the Frobenius-Perron operator associated with the unperturbed transformation and reconstruct the onedimensional map is proposed.•The algorithm is extended to nonlinear continuous maps.•Numerical simulation examples are provided to demonstrate the performance of the approach and to compare it with that of an existing algorithm. The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.</abstract><cop>China</cop><pub>Elsevier B.V</pub><pmid>29299016</pmid><doi>10.1016/j.cnsns.2017.05.011</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2018-01, Vol.54, p.248-266
issn 1007-5704
1878-7274
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5589148
source Access via ScienceDirect (Elsevier)
subjects Chaotic maps
Discrete time systems
Dynamical systems
Inverse Frobenius–Perron problem
Nonlinear systems
Probability
Probability density functions
Research Paper
title A matrix-based approach to solving the inverse Frobenius–Perron problem using sequences of density functions of stochastically perturbed dynamical systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20matrix-based%20approach%20to%20solving%20the%20inverse%20Frobenius%E2%80%93Perron%20problem%20using%20sequences%20of%20density%20functions%20of%20stochastically%20perturbed%20dynamical%20systems&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Nie,%20Xiaokai&rft.date=2018-01&rft.volume=54&rft.spage=248&rft.epage=266&rft.pages=248-266&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2017.05.011&rft_dat=%3Cproquest_pubme%3E1984752599%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2021991755&rft_id=info:pmid/29299016&rft_els_id=S1007570417301752&rfr_iscdi=true