A matrix-based approach to solving the inverse Frobenius–Perron problem using sequences of density functions of stochastically perturbed dynamical systems
•The paper introduces new method of reconstructing an unknown one-dimensional transformation that is subject to constantly applied stochastic perturbations based on temporal sequences of probability density functions.•The main assumption is that the one-dimensional transformation that generated the...
Gespeichert in:
Veröffentlicht in: | Communications in nonlinear science & numerical simulation 2018-01, Vol.54, p.248-266 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 266 |
---|---|
container_issue | |
container_start_page | 248 |
container_title | Communications in nonlinear science & numerical simulation |
container_volume | 54 |
creator | Nie, Xiaokai Coca, Daniel |
description | •The paper introduces new method of reconstructing an unknown one-dimensional transformation that is subject to constantly applied stochastic perturbations based on temporal sequences of probability density functions.•The main assumption is that the one-dimensional transformation that generated the densities is piecewise-linear, semi-Markov.•A matrix approximation of the transfer operator associated with the stochastically perturbed transformation, which forms the basis for the reconstruction algorithm, is introduced.•A practical algorithm to estimate the matrix-representation of the Frobenius-Perron operator associated with the unperturbed transformation and reconstruct the onedimensional map is proposed.•The algorithm is extended to nonlinear continuous maps.•Numerical simulation examples are provided to demonstrate the performance of the approach and to compare it with that of an existing algorithm.
The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density. |
doi_str_mv | 10.1016/j.cnsns.2017.05.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5589148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570417301752</els_id><sourcerecordid>1984752599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-a2661187ac38c8a036cd6ce41dfc8c4f2a6b324612dceb0b00b996e2e44029123</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEoqXwBEjIEhs2Cbbj_HgBUlVRQKoEC1hbjjPp9VViB49zRXa8A1uejifB6S0VsGBle_ydGR-fLHvKaMEoq1_uC-PQYcEpawpaFZSxe9kpa5s2b3gj7qc9pU1eNVScZI8Q9zSpZCUeZidccinT6TT7cU4mHYP9mncaoSd6noPXZkeiJ-jHg3XXJO6AWHeAgEAug-_A2QV_fvv-EULwjiRBN8JEFtxghC8LOANI_EB6cGjjSobFmWi9uyli9GanMVqjx3ElM4S4hC7N7lenp61KcMUIEz7OHgx6RHhyu55lny_ffLp4l199ePv-4vwqN6JtYq55XbPkW5uyNa2mZW362oBg_WBaIwau667koma8N9DRjtJOyho4CEG5ZLw8y14f-85LN0GCXAx6VHOwkw6r8tqqv2-c3alrf1BV1Uom2tTgxW2D4JN9jGqyaGActQO_oGKyFU3FKykT-vwfdO-X4JI9xSlnUrKmqhJVHikTPGKA4e4xjKotfbVXN-mrLX1FK5XST6pnf_q40_yOOwGvjgCk3zxYCAqN3dLqbQATVe_tfwf8Atc-yDI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021991755</pqid></control><display><type>article</type><title>A matrix-based approach to solving the inverse Frobenius–Perron problem using sequences of density functions of stochastically perturbed dynamical systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Nie, Xiaokai ; Coca, Daniel</creator><creatorcontrib>Nie, Xiaokai ; Coca, Daniel</creatorcontrib><description>•The paper introduces new method of reconstructing an unknown one-dimensional transformation that is subject to constantly applied stochastic perturbations based on temporal sequences of probability density functions.•The main assumption is that the one-dimensional transformation that generated the densities is piecewise-linear, semi-Markov.•A matrix approximation of the transfer operator associated with the stochastically perturbed transformation, which forms the basis for the reconstruction algorithm, is introduced.•A practical algorithm to estimate the matrix-representation of the Frobenius-Perron operator associated with the unperturbed transformation and reconstruct the onedimensional map is proposed.•The algorithm is extended to nonlinear continuous maps.•Numerical simulation examples are provided to demonstrate the performance of the approach and to compare it with that of an existing algorithm.
The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2017.05.011</identifier><identifier>PMID: 29299016</identifier><language>eng</language><publisher>China: Elsevier B.V</publisher><subject>Chaotic maps ; Discrete time systems ; Dynamical systems ; Inverse Frobenius–Perron problem ; Nonlinear systems ; Probability ; Probability density functions ; Research Paper</subject><ispartof>Communications in nonlinear science & numerical simulation, 2018-01, Vol.54, p.248-266</ispartof><rights>2017 The Authors</rights><rights>Copyright Elsevier Science Ltd. Jan 2018</rights><rights>2017 The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-a2661187ac38c8a036cd6ce41dfc8c4f2a6b324612dceb0b00b996e2e44029123</citedby><cites>FETCH-LOGICAL-c487t-a2661187ac38c8a036cd6ce41dfc8c4f2a6b324612dceb0b00b996e2e44029123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2017.05.011$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29299016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Xiaokai</creatorcontrib><creatorcontrib>Coca, Daniel</creatorcontrib><title>A matrix-based approach to solving the inverse Frobenius–Perron problem using sequences of density functions of stochastically perturbed dynamical systems</title><title>Communications in nonlinear science & numerical simulation</title><addtitle>Commun Nonlinear Sci Numer Simul</addtitle><description>•The paper introduces new method of reconstructing an unknown one-dimensional transformation that is subject to constantly applied stochastic perturbations based on temporal sequences of probability density functions.•The main assumption is that the one-dimensional transformation that generated the densities is piecewise-linear, semi-Markov.•A matrix approximation of the transfer operator associated with the stochastically perturbed transformation, which forms the basis for the reconstruction algorithm, is introduced.•A practical algorithm to estimate the matrix-representation of the Frobenius-Perron operator associated with the unperturbed transformation and reconstruct the onedimensional map is proposed.•The algorithm is extended to nonlinear continuous maps.•Numerical simulation examples are provided to demonstrate the performance of the approach and to compare it with that of an existing algorithm.
The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.</description><subject>Chaotic maps</subject><subject>Discrete time systems</subject><subject>Dynamical systems</subject><subject>Inverse Frobenius–Perron problem</subject><subject>Nonlinear systems</subject><subject>Probability</subject><subject>Probability density functions</subject><subject>Research Paper</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhSMEoqXwBEjIEhs2Cbbj_HgBUlVRQKoEC1hbjjPp9VViB49zRXa8A1uejifB6S0VsGBle_ydGR-fLHvKaMEoq1_uC-PQYcEpawpaFZSxe9kpa5s2b3gj7qc9pU1eNVScZI8Q9zSpZCUeZidccinT6TT7cU4mHYP9mncaoSd6noPXZkeiJ-jHg3XXJO6AWHeAgEAug-_A2QV_fvv-EULwjiRBN8JEFtxghC8LOANI_EB6cGjjSobFmWi9uyli9GanMVqjx3ElM4S4hC7N7lenp61KcMUIEz7OHgx6RHhyu55lny_ffLp4l199ePv-4vwqN6JtYq55XbPkW5uyNa2mZW362oBg_WBaIwau667koma8N9DRjtJOyho4CEG5ZLw8y14f-85LN0GCXAx6VHOwkw6r8tqqv2-c3alrf1BV1Uom2tTgxW2D4JN9jGqyaGActQO_oGKyFU3FKykT-vwfdO-X4JI9xSlnUrKmqhJVHikTPGKA4e4xjKotfbVXN-mrLX1FK5XST6pnf_q40_yOOwGvjgCk3zxYCAqN3dLqbQATVe_tfwf8Atc-yDI</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Nie, Xiaokai</creator><creator>Coca, Daniel</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><general>Center for Nonlinear Science, Peking University</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201801</creationdate><title>A matrix-based approach to solving the inverse Frobenius–Perron problem using sequences of density functions of stochastically perturbed dynamical systems</title><author>Nie, Xiaokai ; Coca, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-a2661187ac38c8a036cd6ce41dfc8c4f2a6b324612dceb0b00b996e2e44029123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chaotic maps</topic><topic>Discrete time systems</topic><topic>Dynamical systems</topic><topic>Inverse Frobenius–Perron problem</topic><topic>Nonlinear systems</topic><topic>Probability</topic><topic>Probability density functions</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Xiaokai</creatorcontrib><creatorcontrib>Coca, Daniel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications in nonlinear science & numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Xiaokai</au><au>Coca, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A matrix-based approach to solving the inverse Frobenius–Perron problem using sequences of density functions of stochastically perturbed dynamical systems</atitle><jtitle>Communications in nonlinear science & numerical simulation</jtitle><addtitle>Commun Nonlinear Sci Numer Simul</addtitle><date>2018-01</date><risdate>2018</risdate><volume>54</volume><spage>248</spage><epage>266</epage><pages>248-266</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•The paper introduces new method of reconstructing an unknown one-dimensional transformation that is subject to constantly applied stochastic perturbations based on temporal sequences of probability density functions.•The main assumption is that the one-dimensional transformation that generated the densities is piecewise-linear, semi-Markov.•A matrix approximation of the transfer operator associated with the stochastically perturbed transformation, which forms the basis for the reconstruction algorithm, is introduced.•A practical algorithm to estimate the matrix-representation of the Frobenius-Perron operator associated with the unperturbed transformation and reconstruct the onedimensional map is proposed.•The algorithm is extended to nonlinear continuous maps.•Numerical simulation examples are provided to demonstrate the performance of the approach and to compare it with that of an existing algorithm.
The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.</abstract><cop>China</cop><pub>Elsevier B.V</pub><pmid>29299016</pmid><doi>10.1016/j.cnsns.2017.05.011</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-5704 |
ispartof | Communications in nonlinear science & numerical simulation, 2018-01, Vol.54, p.248-266 |
issn | 1007-5704 1878-7274 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5589148 |
source | Access via ScienceDirect (Elsevier) |
subjects | Chaotic maps Discrete time systems Dynamical systems Inverse Frobenius–Perron problem Nonlinear systems Probability Probability density functions Research Paper |
title | A matrix-based approach to solving the inverse Frobenius–Perron problem using sequences of density functions of stochastically perturbed dynamical systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20matrix-based%20approach%20to%20solving%20the%20inverse%20Frobenius%E2%80%93Perron%20problem%20using%20sequences%20of%20density%20functions%20of%20stochastically%20perturbed%20dynamical%20systems&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Nie,%20Xiaokai&rft.date=2018-01&rft.volume=54&rft.spage=248&rft.epage=266&rft.pages=248-266&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2017.05.011&rft_dat=%3Cproquest_pubme%3E1984752599%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2021991755&rft_id=info:pmid/29299016&rft_els_id=S1007570417301752&rfr_iscdi=true |