Vaccine candidate discovery for the next generation of malaria vaccines

Summary Although epidemiological observations, IgG passive transfer studies and experimental infections in humans all support the feasibility of developing highly effective malaria vaccines, the precise antigens that induce protective immunity remain uncertain. Here, we review the methodologies appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunology 2017-10, Vol.152 (2), p.195-206
Hauptverfasser: Tuju, James, Kamuyu, Gathoni, Murungi, Linda M., Osier, Faith H. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue 2
container_start_page 195
container_title Immunology
container_volume 152
creator Tuju, James
Kamuyu, Gathoni
Murungi, Linda M.
Osier, Faith H. A.
description Summary Although epidemiological observations, IgG passive transfer studies and experimental infections in humans all support the feasibility of developing highly effective malaria vaccines, the precise antigens that induce protective immunity remain uncertain. Here, we review the methodologies applied to vaccine candidate discovery for Plasmodium falciparum malaria from the pre‐ to post‐genomic era. Probing of genomic and cDNA libraries with antibodies of defined specificities or functional activity predominated the former, whereas reverse vaccinology encompassing high throughput in silico analyses of genomic, transcriptomic or proteomic parasite data sets is the mainstay of the latter. Antibody‐guided vaccine design spanned both eras but currently benefits from technological advances facilitating high‐throughput screening and downstream applications. We make the case that although we have exponentially increased our ability to identify numerous potential vaccine candidates in a relatively short space of time, a significant bottleneck remains in their validation and prioritization for evaluation in clinical trials. Longitudinal cohort studies provide supportive evidence but results are often conflicting between studies. Demonstration of antigen‐specific antibody function is valuable but the relative importance of one mechanism over another with regards to protection remains undetermined. Animal models offer useful insights but may not accurately reflect human disease. Challenge studies in humans are preferable but prohibitively expensive. In the absence of reliable correlates of protection, suitable animal models or a better understanding of the mechanisms underlying protective immunity in humans, vaccine candidate discovery per se may not be sufficient to provide the paradigm shift necessary to develop the next generation of highly effective subunit malaria vaccines. The discovery of vaccine candidates has been accelerated in the post‐genomic era by availability of large genomic, transcriptomic and proteomic data sets. The validation of these targets, however, remains a great challenge in the absence of reliable correlates of protection and currently relies on in vitro laboratory assays, longitudinal cohort studies and testing in animal models as well as humans.
doi_str_mv 10.1111/imm.12780
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5588761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1936216101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4430-235316fcad7768f09c313610f6c71a9060118cfc4325210bbe9c7ba0378135bd3</originalsourceid><addsrcrecordid>eNp1kU1LxDAURYMoOn4s_AMScKOLal7TpOlGkMEvUNyo25CmqUbaRJPO6Px7o1VRwWxCeCeH-7gIbQM5gHQObd8fQF4KsoQmQDnLcsbLZTQhBKosF4StofUYH9OTEsZW0VoueMGZ4BN0dqe0ts5grVxjGzUY3Nio_dyEBW59wMODwc68DvjeOBPUYL3DvsW96lSwCs_H73ETrbSqi2br895At6cnN9Pz7PL67GJ6fJnpoqAkyymjwFutmrLkoiWVpikwkJbrElRFOAEQutUFzVkOpK5NpctaEVoKoKxu6AY6Gr1Ps7o3jTZuCKqTT8H2KiykV1b-njj7IO_9XDImRMkhCfY-BcE_z0wcZJ_2NV2nnPGzKKECSqsixUjo7h_00c-CS-slivIcUvB34f5I6eBjDKb9DgNEvtcjUz3yo57E7vxM_01-9ZGAwxF4sZ1Z_G-SF1dXo_IN4HOYzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936216101</pqid></control><display><type>article</type><title>Vaccine candidate discovery for the next generation of malaria vaccines</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Tuju, James ; Kamuyu, Gathoni ; Murungi, Linda M. ; Osier, Faith H. A.</creator><creatorcontrib>Tuju, James ; Kamuyu, Gathoni ; Murungi, Linda M. ; Osier, Faith H. A.</creatorcontrib><description>Summary Although epidemiological observations, IgG passive transfer studies and experimental infections in humans all support the feasibility of developing highly effective malaria vaccines, the precise antigens that induce protective immunity remain uncertain. Here, we review the methodologies applied to vaccine candidate discovery for Plasmodium falciparum malaria from the pre‐ to post‐genomic era. Probing of genomic and cDNA libraries with antibodies of defined specificities or functional activity predominated the former, whereas reverse vaccinology encompassing high throughput in silico analyses of genomic, transcriptomic or proteomic parasite data sets is the mainstay of the latter. Antibody‐guided vaccine design spanned both eras but currently benefits from technological advances facilitating high‐throughput screening and downstream applications. We make the case that although we have exponentially increased our ability to identify numerous potential vaccine candidates in a relatively short space of time, a significant bottleneck remains in their validation and prioritization for evaluation in clinical trials. Longitudinal cohort studies provide supportive evidence but results are often conflicting between studies. Demonstration of antigen‐specific antibody function is valuable but the relative importance of one mechanism over another with regards to protection remains undetermined. Animal models offer useful insights but may not accurately reflect human disease. Challenge studies in humans are preferable but prohibitively expensive. In the absence of reliable correlates of protection, suitable animal models or a better understanding of the mechanisms underlying protective immunity in humans, vaccine candidate discovery per se may not be sufficient to provide the paradigm shift necessary to develop the next generation of highly effective subunit malaria vaccines. The discovery of vaccine candidates has been accelerated in the post‐genomic era by availability of large genomic, transcriptomic and proteomic data sets. The validation of these targets, however, remains a great challenge in the absence of reliable correlates of protection and currently relies on in vitro laboratory assays, longitudinal cohort studies and testing in animal models as well as humans.</description><identifier>ISSN: 0019-2805</identifier><identifier>ISSN: 1365-2567</identifier><identifier>EISSN: 1365-2567</identifier><identifier>DOI: 10.1111/imm.12780</identifier><identifier>PMID: 28646586</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animal models ; Animals ; Antibodies ; Antibodies, Protozoan - immunology ; Antigens ; Antigens, Protozoan - genetics ; Antigens, Protozoan - immunology ; bioinformatics ; Clinical trials ; Drug Discovery - methods ; Epidemiology ; Feasibility studies ; Gene Library ; High-throughput screening ; High-Throughput Screening Assays ; Host-Pathogen Interactions ; Humans ; Immunity ; Immunoglobulin G ; Malaria ; Malaria Vaccines - genetics ; Malaria Vaccines - immunology ; Malaria Vaccines - therapeutic use ; Malaria, Falciparum - immunology ; Malaria, Falciparum - parasitology ; Malaria, Falciparum - prevention &amp; control ; Medical research ; Plasmodium falciparum ; Plasmodium falciparum - genetics ; Plasmodium falciparum - immunology ; Proteomics ; Review ; Vaccines ; Vector-borne diseases</subject><ispartof>Immunology, 2017-10, Vol.152 (2), p.195-206</ispartof><rights>2017 The Authors. Published by John Wiley &amp; Sons Ltd.</rights><rights>2017 The Authors. Immunology Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2017 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4430-235316fcad7768f09c313610f6c71a9060118cfc4325210bbe9c7ba0378135bd3</citedby><cites>FETCH-LOGICAL-c4430-235316fcad7768f09c313610f6c71a9060118cfc4325210bbe9c7ba0378135bd3</cites><orcidid>0000-0002-0624-1791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5588761/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5588761/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,45553,45554,46387,46811,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28646586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tuju, James</creatorcontrib><creatorcontrib>Kamuyu, Gathoni</creatorcontrib><creatorcontrib>Murungi, Linda M.</creatorcontrib><creatorcontrib>Osier, Faith H. A.</creatorcontrib><title>Vaccine candidate discovery for the next generation of malaria vaccines</title><title>Immunology</title><addtitle>Immunology</addtitle><description>Summary Although epidemiological observations, IgG passive transfer studies and experimental infections in humans all support the feasibility of developing highly effective malaria vaccines, the precise antigens that induce protective immunity remain uncertain. Here, we review the methodologies applied to vaccine candidate discovery for Plasmodium falciparum malaria from the pre‐ to post‐genomic era. Probing of genomic and cDNA libraries with antibodies of defined specificities or functional activity predominated the former, whereas reverse vaccinology encompassing high throughput in silico analyses of genomic, transcriptomic or proteomic parasite data sets is the mainstay of the latter. Antibody‐guided vaccine design spanned both eras but currently benefits from technological advances facilitating high‐throughput screening and downstream applications. We make the case that although we have exponentially increased our ability to identify numerous potential vaccine candidates in a relatively short space of time, a significant bottleneck remains in their validation and prioritization for evaluation in clinical trials. Longitudinal cohort studies provide supportive evidence but results are often conflicting between studies. Demonstration of antigen‐specific antibody function is valuable but the relative importance of one mechanism over another with regards to protection remains undetermined. Animal models offer useful insights but may not accurately reflect human disease. Challenge studies in humans are preferable but prohibitively expensive. In the absence of reliable correlates of protection, suitable animal models or a better understanding of the mechanisms underlying protective immunity in humans, vaccine candidate discovery per se may not be sufficient to provide the paradigm shift necessary to develop the next generation of highly effective subunit malaria vaccines. The discovery of vaccine candidates has been accelerated in the post‐genomic era by availability of large genomic, transcriptomic and proteomic data sets. The validation of these targets, however, remains a great challenge in the absence of reliable correlates of protection and currently relies on in vitro laboratory assays, longitudinal cohort studies and testing in animal models as well as humans.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies, Protozoan - immunology</subject><subject>Antigens</subject><subject>Antigens, Protozoan - genetics</subject><subject>Antigens, Protozoan - immunology</subject><subject>bioinformatics</subject><subject>Clinical trials</subject><subject>Drug Discovery - methods</subject><subject>Epidemiology</subject><subject>Feasibility studies</subject><subject>Gene Library</subject><subject>High-throughput screening</subject><subject>High-Throughput Screening Assays</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Immunity</subject><subject>Immunoglobulin G</subject><subject>Malaria</subject><subject>Malaria Vaccines - genetics</subject><subject>Malaria Vaccines - immunology</subject><subject>Malaria Vaccines - therapeutic use</subject><subject>Malaria, Falciparum - immunology</subject><subject>Malaria, Falciparum - parasitology</subject><subject>Malaria, Falciparum - prevention &amp; control</subject><subject>Medical research</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - genetics</subject><subject>Plasmodium falciparum - immunology</subject><subject>Proteomics</subject><subject>Review</subject><subject>Vaccines</subject><subject>Vector-borne diseases</subject><issn>0019-2805</issn><issn>1365-2567</issn><issn>1365-2567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kU1LxDAURYMoOn4s_AMScKOLal7TpOlGkMEvUNyo25CmqUbaRJPO6Px7o1VRwWxCeCeH-7gIbQM5gHQObd8fQF4KsoQmQDnLcsbLZTQhBKosF4StofUYH9OTEsZW0VoueMGZ4BN0dqe0ts5grVxjGzUY3Nio_dyEBW59wMODwc68DvjeOBPUYL3DvsW96lSwCs_H73ETrbSqi2br895At6cnN9Pz7PL67GJ6fJnpoqAkyymjwFutmrLkoiWVpikwkJbrElRFOAEQutUFzVkOpK5NpctaEVoKoKxu6AY6Gr1Ps7o3jTZuCKqTT8H2KiykV1b-njj7IO_9XDImRMkhCfY-BcE_z0wcZJ_2NV2nnPGzKKECSqsixUjo7h_00c-CS-slivIcUvB34f5I6eBjDKb9DgNEvtcjUz3yo57E7vxM_01-9ZGAwxF4sZ1Z_G-SF1dXo_IN4HOYzA</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Tuju, James</creator><creator>Kamuyu, Gathoni</creator><creator>Murungi, Linda M.</creator><creator>Osier, Faith H. A.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QR</scope><scope>7T5</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0624-1791</orcidid></search><sort><creationdate>201710</creationdate><title>Vaccine candidate discovery for the next generation of malaria vaccines</title><author>Tuju, James ; Kamuyu, Gathoni ; Murungi, Linda M. ; Osier, Faith H. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4430-235316fcad7768f09c313610f6c71a9060118cfc4325210bbe9c7ba0378135bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies, Protozoan - immunology</topic><topic>Antigens</topic><topic>Antigens, Protozoan - genetics</topic><topic>Antigens, Protozoan - immunology</topic><topic>bioinformatics</topic><topic>Clinical trials</topic><topic>Drug Discovery - methods</topic><topic>Epidemiology</topic><topic>Feasibility studies</topic><topic>Gene Library</topic><topic>High-throughput screening</topic><topic>High-Throughput Screening Assays</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Immunity</topic><topic>Immunoglobulin G</topic><topic>Malaria</topic><topic>Malaria Vaccines - genetics</topic><topic>Malaria Vaccines - immunology</topic><topic>Malaria Vaccines - therapeutic use</topic><topic>Malaria, Falciparum - immunology</topic><topic>Malaria, Falciparum - parasitology</topic><topic>Malaria, Falciparum - prevention &amp; control</topic><topic>Medical research</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - genetics</topic><topic>Plasmodium falciparum - immunology</topic><topic>Proteomics</topic><topic>Review</topic><topic>Vaccines</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuju, James</creatorcontrib><creatorcontrib>Kamuyu, Gathoni</creatorcontrib><creatorcontrib>Murungi, Linda M.</creatorcontrib><creatorcontrib>Osier, Faith H. A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuju, James</au><au>Kamuyu, Gathoni</au><au>Murungi, Linda M.</au><au>Osier, Faith H. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vaccine candidate discovery for the next generation of malaria vaccines</atitle><jtitle>Immunology</jtitle><addtitle>Immunology</addtitle><date>2017-10</date><risdate>2017</risdate><volume>152</volume><issue>2</issue><spage>195</spage><epage>206</epage><pages>195-206</pages><issn>0019-2805</issn><issn>1365-2567</issn><eissn>1365-2567</eissn><abstract>Summary Although epidemiological observations, IgG passive transfer studies and experimental infections in humans all support the feasibility of developing highly effective malaria vaccines, the precise antigens that induce protective immunity remain uncertain. Here, we review the methodologies applied to vaccine candidate discovery for Plasmodium falciparum malaria from the pre‐ to post‐genomic era. Probing of genomic and cDNA libraries with antibodies of defined specificities or functional activity predominated the former, whereas reverse vaccinology encompassing high throughput in silico analyses of genomic, transcriptomic or proteomic parasite data sets is the mainstay of the latter. Antibody‐guided vaccine design spanned both eras but currently benefits from technological advances facilitating high‐throughput screening and downstream applications. We make the case that although we have exponentially increased our ability to identify numerous potential vaccine candidates in a relatively short space of time, a significant bottleneck remains in their validation and prioritization for evaluation in clinical trials. Longitudinal cohort studies provide supportive evidence but results are often conflicting between studies. Demonstration of antigen‐specific antibody function is valuable but the relative importance of one mechanism over another with regards to protection remains undetermined. Animal models offer useful insights but may not accurately reflect human disease. Challenge studies in humans are preferable but prohibitively expensive. In the absence of reliable correlates of protection, suitable animal models or a better understanding of the mechanisms underlying protective immunity in humans, vaccine candidate discovery per se may not be sufficient to provide the paradigm shift necessary to develop the next generation of highly effective subunit malaria vaccines. The discovery of vaccine candidates has been accelerated in the post‐genomic era by availability of large genomic, transcriptomic and proteomic data sets. The validation of these targets, however, remains a great challenge in the absence of reliable correlates of protection and currently relies on in vitro laboratory assays, longitudinal cohort studies and testing in animal models as well as humans.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28646586</pmid><doi>10.1111/imm.12780</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0624-1791</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0019-2805
ispartof Immunology, 2017-10, Vol.152 (2), p.195-206
issn 0019-2805
1365-2567
1365-2567
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5588761
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animal models
Animals
Antibodies
Antibodies, Protozoan - immunology
Antigens
Antigens, Protozoan - genetics
Antigens, Protozoan - immunology
bioinformatics
Clinical trials
Drug Discovery - methods
Epidemiology
Feasibility studies
Gene Library
High-throughput screening
High-Throughput Screening Assays
Host-Pathogen Interactions
Humans
Immunity
Immunoglobulin G
Malaria
Malaria Vaccines - genetics
Malaria Vaccines - immunology
Malaria Vaccines - therapeutic use
Malaria, Falciparum - immunology
Malaria, Falciparum - parasitology
Malaria, Falciparum - prevention & control
Medical research
Plasmodium falciparum
Plasmodium falciparum - genetics
Plasmodium falciparum - immunology
Proteomics
Review
Vaccines
Vector-borne diseases
title Vaccine candidate discovery for the next generation of malaria vaccines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vaccine%20candidate%20discovery%20for%20the%20next%20generation%20of%20malaria%20vaccines&rft.jtitle=Immunology&rft.au=Tuju,%20James&rft.date=2017-10&rft.volume=152&rft.issue=2&rft.spage=195&rft.epage=206&rft.pages=195-206&rft.issn=0019-2805&rft.eissn=1365-2567&rft_id=info:doi/10.1111/imm.12780&rft_dat=%3Cproquest_pubme%3E1936216101%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1936216101&rft_id=info:pmid/28646586&rfr_iscdi=true