Microscale Liquid Transport in Polycrystalline Inverse Opals across Grain Boundaries

Delivering liquid through the void spaces in porous metals is a daunting challenge for a variety of emerging interface technologies ranging from battery electrodes to evaporation surfaces. Hydraulic transport characteristics of well-ordered porous media are governed by the pore distribution, porosit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-09, Vol.7 (1), p.10465-10465, Article 10465
Hauptverfasser: Pham, Q. N., Barako, M. T., Tice, J., Won, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10465
container_issue 1
container_start_page 10465
container_title Scientific reports
container_volume 7
creator Pham, Q. N.
Barako, M. T.
Tice, J.
Won, Y.
description Delivering liquid through the void spaces in porous metals is a daunting challenge for a variety of emerging interface technologies ranging from battery electrodes to evaporation surfaces. Hydraulic transport characteristics of well-ordered porous media are governed by the pore distribution, porosity, and morphology. Much like energy transport in polycrystalline solids, hydraulic transport in semi-ordered porous media is predominantly limited by defects and grain boundaries. Here, we report the wicking performances for porous copper inverse opals having pore diameters from 300 to 1000 nm by measuring the capillary-driven liquid rise. The capillary performance parameter within single crystal domain (K ij /R eff  = 10 −3 to 10 −2  µm) is an order of magnitude greater than the collective polycrystal (K eff /R eff  = ~10 −5 to 10 −3  µm) due to the hydraulic resistances (i.e. grain boundaries between individual grains). Inspired by the heterogeneity found in biological systems, we report that the capillary performance parameter of gradient porous copper (K eff /R eff  = ~10 −3  µm), comparable to that of single crystals, overcomes hydraulic resistances through providing additional hydraulic routes in three dimensions. The understanding of microscopic liquid transport physics through porous crystals and across grain boundaries will help to pave the way for the spatial design of next-generation heterogeneous porous media.
doi_str_mv 10.1038/s41598-017-10791-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5585244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957713570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-21de4498dd05b7aa18f3ceba493109b0e055054b373e51f37ae0ba1fe3920a003</originalsourceid><addsrcrecordid>eNp1kU9P3DAQxa2qqCDKF-BQReqll7Tjfzi-VGpRS5G2gsNytibJhBpl7cVOkPbb18tStEXCF1t6v3kz48fYKYfPHGTzJSuubVMDNzUHY3kt37AjAUrXQgrxdu99yE5yvoNytLCK23fsUDSNUcbCEVv-9l2KucORqoW_n31fLROGvI5pqnyoruO46dImTziOPlB1GR4oZaqu1jjmCre1ubpIWNDvcQ49Jk_5PTsYikwnT_cxu_n5Y3n-q15cXVyef1vUnVYw1YL3pJRt-h50axB5M8iOWlRWcrAtEGgNWrXSSNJ8kAYJWuQDSSsAAeQx-7rzXc_tivqOwpRwdOvkV5g2LqJ3_yvB_3G38cFp3WihVDH49GSQ4v1MeXIrnzsaRwwU5-y4lWfirAyjC_rxBXoX5xTKeoXSxnCpzXYisaMePybR8DwMB7fNze1ycyU395ibk6Xow_4azyX_UiqA3AG5SOGW0l7v123_AjLNpAU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957713570</pqid></control><display><type>article</type><title>Microscale Liquid Transport in Polycrystalline Inverse Opals across Grain Boundaries</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pham, Q. N. ; Barako, M. T. ; Tice, J. ; Won, Y.</creator><creatorcontrib>Pham, Q. N. ; Barako, M. T. ; Tice, J. ; Won, Y.</creatorcontrib><description>Delivering liquid through the void spaces in porous metals is a daunting challenge for a variety of emerging interface technologies ranging from battery electrodes to evaporation surfaces. Hydraulic transport characteristics of well-ordered porous media are governed by the pore distribution, porosity, and morphology. Much like energy transport in polycrystalline solids, hydraulic transport in semi-ordered porous media is predominantly limited by defects and grain boundaries. Here, we report the wicking performances for porous copper inverse opals having pore diameters from 300 to 1000 nm by measuring the capillary-driven liquid rise. The capillary performance parameter within single crystal domain (K ij /R eff  = 10 −3 to 10 −2  µm) is an order of magnitude greater than the collective polycrystal (K eff /R eff  = ~10 −5 to 10 −3  µm) due to the hydraulic resistances (i.e. grain boundaries between individual grains). Inspired by the heterogeneity found in biological systems, we report that the capillary performance parameter of gradient porous copper (K eff /R eff  = ~10 −3  µm), comparable to that of single crystals, overcomes hydraulic resistances through providing additional hydraulic routes in three dimensions. The understanding of microscopic liquid transport physics through porous crystals and across grain boundaries will help to pave the way for the spatial design of next-generation heterogeneous porous media.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-10791-3</identifier><identifier>PMID: 28874790</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/341 ; 639/766/189 ; 639/925/357/537 ; Boundaries ; Copper ; Crystals ; Evaporation ; Grain boundaries ; Heavy metals ; Heterogeneity ; Humanities and Social Sciences ; Hydraulics ; multidisciplinary ; Porosity ; Porous materials ; Porous media ; Science ; Science (multidisciplinary) ; Spatial distribution</subject><ispartof>Scientific reports, 2017-09, Vol.7 (1), p.10465-10465, Article 10465</ispartof><rights>The Author(s) 2017</rights><rights>Scientific Reports is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-21de4498dd05b7aa18f3ceba493109b0e055054b373e51f37ae0ba1fe3920a003</citedby><cites>FETCH-LOGICAL-c540t-21de4498dd05b7aa18f3ceba493109b0e055054b373e51f37ae0ba1fe3920a003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585244/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585244/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28874790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pham, Q. N.</creatorcontrib><creatorcontrib>Barako, M. T.</creatorcontrib><creatorcontrib>Tice, J.</creatorcontrib><creatorcontrib>Won, Y.</creatorcontrib><title>Microscale Liquid Transport in Polycrystalline Inverse Opals across Grain Boundaries</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Delivering liquid through the void spaces in porous metals is a daunting challenge for a variety of emerging interface technologies ranging from battery electrodes to evaporation surfaces. Hydraulic transport characteristics of well-ordered porous media are governed by the pore distribution, porosity, and morphology. Much like energy transport in polycrystalline solids, hydraulic transport in semi-ordered porous media is predominantly limited by defects and grain boundaries. Here, we report the wicking performances for porous copper inverse opals having pore diameters from 300 to 1000 nm by measuring the capillary-driven liquid rise. The capillary performance parameter within single crystal domain (K ij /R eff  = 10 −3 to 10 −2  µm) is an order of magnitude greater than the collective polycrystal (K eff /R eff  = ~10 −5 to 10 −3  µm) due to the hydraulic resistances (i.e. grain boundaries between individual grains). Inspired by the heterogeneity found in biological systems, we report that the capillary performance parameter of gradient porous copper (K eff /R eff  = ~10 −3  µm), comparable to that of single crystals, overcomes hydraulic resistances through providing additional hydraulic routes in three dimensions. The understanding of microscopic liquid transport physics through porous crystals and across grain boundaries will help to pave the way for the spatial design of next-generation heterogeneous porous media.</description><subject>639/301/357/341</subject><subject>639/766/189</subject><subject>639/925/357/537</subject><subject>Boundaries</subject><subject>Copper</subject><subject>Crystals</subject><subject>Evaporation</subject><subject>Grain boundaries</subject><subject>Heavy metals</subject><subject>Heterogeneity</subject><subject>Humanities and Social Sciences</subject><subject>Hydraulics</subject><subject>multidisciplinary</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatial distribution</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU9P3DAQxa2qqCDKF-BQReqll7Tjfzi-VGpRS5G2gsNytibJhBpl7cVOkPbb18tStEXCF1t6v3kz48fYKYfPHGTzJSuubVMDNzUHY3kt37AjAUrXQgrxdu99yE5yvoNytLCK23fsUDSNUcbCEVv-9l2KucORqoW_n31fLROGvI5pqnyoruO46dImTziOPlB1GR4oZaqu1jjmCre1ubpIWNDvcQ49Jk_5PTsYikwnT_cxu_n5Y3n-q15cXVyef1vUnVYw1YL3pJRt-h50axB5M8iOWlRWcrAtEGgNWrXSSNJ8kAYJWuQDSSsAAeQx-7rzXc_tivqOwpRwdOvkV5g2LqJ3_yvB_3G38cFp3WihVDH49GSQ4v1MeXIrnzsaRwwU5-y4lWfirAyjC_rxBXoX5xTKeoXSxnCpzXYisaMePybR8DwMB7fNze1ycyU395ibk6Xow_4azyX_UiqA3AG5SOGW0l7v123_AjLNpAU</recordid><startdate>20170905</startdate><enddate>20170905</enddate><creator>Pham, Q. N.</creator><creator>Barako, M. T.</creator><creator>Tice, J.</creator><creator>Won, Y.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170905</creationdate><title>Microscale Liquid Transport in Polycrystalline Inverse Opals across Grain Boundaries</title><author>Pham, Q. N. ; Barako, M. T. ; Tice, J. ; Won, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-21de4498dd05b7aa18f3ceba493109b0e055054b373e51f37ae0ba1fe3920a003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/301/357/341</topic><topic>639/766/189</topic><topic>639/925/357/537</topic><topic>Boundaries</topic><topic>Copper</topic><topic>Crystals</topic><topic>Evaporation</topic><topic>Grain boundaries</topic><topic>Heavy metals</topic><topic>Heterogeneity</topic><topic>Humanities and Social Sciences</topic><topic>Hydraulics</topic><topic>multidisciplinary</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Q. N.</creatorcontrib><creatorcontrib>Barako, M. T.</creatorcontrib><creatorcontrib>Tice, J.</creatorcontrib><creatorcontrib>Won, Y.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Q. N.</au><au>Barako, M. T.</au><au>Tice, J.</au><au>Won, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscale Liquid Transport in Polycrystalline Inverse Opals across Grain Boundaries</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-09-05</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>10465</spage><epage>10465</epage><pages>10465-10465</pages><artnum>10465</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Delivering liquid through the void spaces in porous metals is a daunting challenge for a variety of emerging interface technologies ranging from battery electrodes to evaporation surfaces. Hydraulic transport characteristics of well-ordered porous media are governed by the pore distribution, porosity, and morphology. Much like energy transport in polycrystalline solids, hydraulic transport in semi-ordered porous media is predominantly limited by defects and grain boundaries. Here, we report the wicking performances for porous copper inverse opals having pore diameters from 300 to 1000 nm by measuring the capillary-driven liquid rise. The capillary performance parameter within single crystal domain (K ij /R eff  = 10 −3 to 10 −2  µm) is an order of magnitude greater than the collective polycrystal (K eff /R eff  = ~10 −5 to 10 −3  µm) due to the hydraulic resistances (i.e. grain boundaries between individual grains). Inspired by the heterogeneity found in biological systems, we report that the capillary performance parameter of gradient porous copper (K eff /R eff  = ~10 −3  µm), comparable to that of single crystals, overcomes hydraulic resistances through providing additional hydraulic routes in three dimensions. The understanding of microscopic liquid transport physics through porous crystals and across grain boundaries will help to pave the way for the spatial design of next-generation heterogeneous porous media.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28874790</pmid><doi>10.1038/s41598-017-10791-3</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-09, Vol.7 (1), p.10465-10465, Article 10465
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5585244
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 639/301/357/341
639/766/189
639/925/357/537
Boundaries
Copper
Crystals
Evaporation
Grain boundaries
Heavy metals
Heterogeneity
Humanities and Social Sciences
Hydraulics
multidisciplinary
Porosity
Porous materials
Porous media
Science
Science (multidisciplinary)
Spatial distribution
title Microscale Liquid Transport in Polycrystalline Inverse Opals across Grain Boundaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscale%20Liquid%20Transport%20in%20Polycrystalline%20Inverse%20Opals%20across%20Grain%20Boundaries&rft.jtitle=Scientific%20reports&rft.au=Pham,%20Q.%20N.&rft.date=2017-09-05&rft.volume=7&rft.issue=1&rft.spage=10465&rft.epage=10465&rft.pages=10465-10465&rft.artnum=10465&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-10791-3&rft_dat=%3Cproquest_pubme%3E1957713570%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1957713570&rft_id=info:pmid/28874790&rfr_iscdi=true