Individual- and Area-Level SES in Diabetes Risk Prediction: The Multi-Ethnic Study of Atherosclerosis
Introduction The purpose of this study was to evaluate if adding SES to risk prediction models based upon traditional risk factors improves the prediction of diabetes. Methods Risk prediction models without and with individual- and area-level SES predictors were compared using the prospective Multi-...
Gespeichert in:
Veröffentlicht in: | American journal of preventive medicine 2017-08, Vol.53 (2), p.201-209 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 209 |
---|---|
container_issue | 2 |
container_start_page | 201 |
container_title | American journal of preventive medicine |
container_volume | 53 |
creator | Christine, Paul J., MPH Young, Rebekah, PhD Adar, Sara D., ScD, MHS Bertoni, Alain G., MD, MPH Heisler, Michele, MD Carnethon, Mercedes R., PhD Hayward, Rodney A., MD Diez Roux, Ana V., MD, PhD |
description | Introduction The purpose of this study was to evaluate if adding SES to risk prediction models based upon traditional risk factors improves the prediction of diabetes. Methods Risk prediction models without and with individual- and area-level SES predictors were compared using the prospective Multi-Ethnic Study of Atherosclerosis. Cox proportional hazards models were utilized to estimate hazard ratios for SES predictors and to generate 10-year predicted risks for 5,021 individuals without diabetes at baseline followed from 2000 to 2012. C-statistics were used to compare model discrimination, and the proportion of individuals reclassified into higher or lower risk categories with the addition of SES predictors was calculated. The accuracy of risk prediction by SES was assessed by comparing observed and predicted risks across tertiles of the SES variables. Statistical analyses were performed in 2015–2016. Results Over a median of 9.2 years of follow-up, 615 individuals developed diabetes. Individual- and area-level SES variables did not significantly improve model discrimination or reclassify substantial numbers of individuals across risk categories. Models without SES predictors generally underestimated risk for low-SES individuals or individuals residing in low-SES areas (underestimates ranging from 0.31% to 1.07%) and overestimated risk for high-SES individuals or individuals residing in high-SES areas (overestimates ranging from 0.70% to 1.30%), and the addition of SES variables largely mitigated these differences. Conclusions Standard diabetes risk models may underestimate risk for low-SES individuals and overestimate risk for those of high SES. Adding SES predictors helps correct this systematic misestimation, but may not improve model discrimination. |
doi_str_mv | 10.1016/j.amepre.2017.04.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5584566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749379717302568</els_id><sourcerecordid>2017034706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-87f94f8ad900c6f22dc19a7f4c4e852e29a0fa2798aafda3d6152f0b1dd25f1a3</originalsourceid><addsrcrecordid>eNqFkl-PEyEUxYnRuHX1GxhD4osvMwLzh8EHk2atukmNxq7PhMLF0qVMhZkm_fYydq26L77AA-ce7rm_i9BzSkpKaPt6W6od7COUjFBekrokVDxAM9rxqmAt4Q_RjPBaFBUX_AI9SWlLCOEdFY_RBeta1nBazRBcB-MOzozKF1gFg-cRVLGEA3i8WqywC_idU2sYIOGvLt3iLxGM04Prwxt8swH8afSDKxbDJjiNV8Nojri3eD5sIPZJ--l06Sl6ZJVP8OzuvkTf3i9urj4Wy88frq_my0I3dTsUHbeitp0yghDdWsaMpkJxW-sauoYBE4pYxbjolLJGVaalDbNkTY1hjaWqukRvT777cb0DoyEMUXm5j26n4lH2ysl_X4LbyO_9QTZNVzdtmw1e3RnE_scIaZA7lzR4rwL0Y5JUUJrnzRjL0pf3pNt-jCHHkxMRUtWcTIb1SaXzIFIEe26GEjlxlFt54virSpJaZo657MXfQc5Fv8H9SQp5nAcHUSbtIOgMJ4IepOnd_364b6C9ywyVv4UjpHMWKhOTRK6mXZpWifKKsKbtqp9MecX4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017034706</pqid></control><display><type>article</type><title>Individual- and Area-Level SES in Diabetes Risk Prediction: The Multi-Ethnic Study of Atherosclerosis</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Christine, Paul J., MPH ; Young, Rebekah, PhD ; Adar, Sara D., ScD, MHS ; Bertoni, Alain G., MD, MPH ; Heisler, Michele, MD ; Carnethon, Mercedes R., PhD ; Hayward, Rodney A., MD ; Diez Roux, Ana V., MD, PhD</creator><creatorcontrib>Christine, Paul J., MPH ; Young, Rebekah, PhD ; Adar, Sara D., ScD, MHS ; Bertoni, Alain G., MD, MPH ; Heisler, Michele, MD ; Carnethon, Mercedes R., PhD ; Hayward, Rodney A., MD ; Diez Roux, Ana V., MD, PhD</creatorcontrib><description>Introduction The purpose of this study was to evaluate if adding SES to risk prediction models based upon traditional risk factors improves the prediction of diabetes. Methods Risk prediction models without and with individual- and area-level SES predictors were compared using the prospective Multi-Ethnic Study of Atherosclerosis. Cox proportional hazards models were utilized to estimate hazard ratios for SES predictors and to generate 10-year predicted risks for 5,021 individuals without diabetes at baseline followed from 2000 to 2012. C-statistics were used to compare model discrimination, and the proportion of individuals reclassified into higher or lower risk categories with the addition of SES predictors was calculated. The accuracy of risk prediction by SES was assessed by comparing observed and predicted risks across tertiles of the SES variables. Statistical analyses were performed in 2015–2016. Results Over a median of 9.2 years of follow-up, 615 individuals developed diabetes. Individual- and area-level SES variables did not significantly improve model discrimination or reclassify substantial numbers of individuals across risk categories. Models without SES predictors generally underestimated risk for low-SES individuals or individuals residing in low-SES areas (underestimates ranging from 0.31% to 1.07%) and overestimated risk for high-SES individuals or individuals residing in high-SES areas (overestimates ranging from 0.70% to 1.30%), and the addition of SES variables largely mitigated these differences. Conclusions Standard diabetes risk models may underestimate risk for low-SES individuals and overestimate risk for those of high SES. Adding SES predictors helps correct this systematic misestimation, but may not improve model discrimination.</description><identifier>ISSN: 0749-3797</identifier><identifier>EISSN: 1873-2607</identifier><identifier>DOI: 10.1016/j.amepre.2017.04.019</identifier><identifier>PMID: 28625713</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Aged ; Atherosclerosis ; Atherosclerosis - epidemiology ; Diabetes ; Diabetes Mellitus, Type 2 - epidemiology ; Diabetes Mellitus, Type 2 - prevention & control ; Diabetics ; Discrimination ; Ethnicity - statistics & numerical data ; Female ; Humans ; Internal Medicine ; Male ; Middle Aged ; Multiracial people ; Prediction models ; Predictions ; Proportional Hazards Models ; Prospective Studies ; Risk ; Risk Assessment - methods ; Risk Assessment - statistics & numerical data ; Risk Factors ; Social Class ; Socioeconomic status ; Variables</subject><ispartof>American journal of preventive medicine, 2017-08, Vol.53 (2), p.201-209</ispartof><rights>2017</rights><rights>Copyright © 2017. Published by Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Aug 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-87f94f8ad900c6f22dc19a7f4c4e852e29a0fa2798aafda3d6152f0b1dd25f1a3</citedby><cites>FETCH-LOGICAL-c546t-87f94f8ad900c6f22dc19a7f4c4e852e29a0fa2798aafda3d6152f0b1dd25f1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0749379717302568$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,30976,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28625713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Christine, Paul J., MPH</creatorcontrib><creatorcontrib>Young, Rebekah, PhD</creatorcontrib><creatorcontrib>Adar, Sara D., ScD, MHS</creatorcontrib><creatorcontrib>Bertoni, Alain G., MD, MPH</creatorcontrib><creatorcontrib>Heisler, Michele, MD</creatorcontrib><creatorcontrib>Carnethon, Mercedes R., PhD</creatorcontrib><creatorcontrib>Hayward, Rodney A., MD</creatorcontrib><creatorcontrib>Diez Roux, Ana V., MD, PhD</creatorcontrib><title>Individual- and Area-Level SES in Diabetes Risk Prediction: The Multi-Ethnic Study of Atherosclerosis</title><title>American journal of preventive medicine</title><addtitle>Am J Prev Med</addtitle><description>Introduction The purpose of this study was to evaluate if adding SES to risk prediction models based upon traditional risk factors improves the prediction of diabetes. Methods Risk prediction models without and with individual- and area-level SES predictors were compared using the prospective Multi-Ethnic Study of Atherosclerosis. Cox proportional hazards models were utilized to estimate hazard ratios for SES predictors and to generate 10-year predicted risks for 5,021 individuals without diabetes at baseline followed from 2000 to 2012. C-statistics were used to compare model discrimination, and the proportion of individuals reclassified into higher or lower risk categories with the addition of SES predictors was calculated. The accuracy of risk prediction by SES was assessed by comparing observed and predicted risks across tertiles of the SES variables. Statistical analyses were performed in 2015–2016. Results Over a median of 9.2 years of follow-up, 615 individuals developed diabetes. Individual- and area-level SES variables did not significantly improve model discrimination or reclassify substantial numbers of individuals across risk categories. Models without SES predictors generally underestimated risk for low-SES individuals or individuals residing in low-SES areas (underestimates ranging from 0.31% to 1.07%) and overestimated risk for high-SES individuals or individuals residing in high-SES areas (overestimates ranging from 0.70% to 1.30%), and the addition of SES variables largely mitigated these differences. Conclusions Standard diabetes risk models may underestimate risk for low-SES individuals and overestimate risk for those of high SES. Adding SES predictors helps correct this systematic misestimation, but may not improve model discrimination.</description><subject>Aged</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis - epidemiology</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2 - epidemiology</subject><subject>Diabetes Mellitus, Type 2 - prevention & control</subject><subject>Diabetics</subject><subject>Discrimination</subject><subject>Ethnicity - statistics & numerical data</subject><subject>Female</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multiracial people</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Proportional Hazards Models</subject><subject>Prospective Studies</subject><subject>Risk</subject><subject>Risk Assessment - methods</subject><subject>Risk Assessment - statistics & numerical data</subject><subject>Risk Factors</subject><subject>Social Class</subject><subject>Socioeconomic status</subject><subject>Variables</subject><issn>0749-3797</issn><issn>1873-2607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNqFkl-PEyEUxYnRuHX1GxhD4osvMwLzh8EHk2atukmNxq7PhMLF0qVMhZkm_fYydq26L77AA-ce7rm_i9BzSkpKaPt6W6od7COUjFBekrokVDxAM9rxqmAt4Q_RjPBaFBUX_AI9SWlLCOEdFY_RBeta1nBazRBcB-MOzozKF1gFg-cRVLGEA3i8WqywC_idU2sYIOGvLt3iLxGM04Prwxt8swH8afSDKxbDJjiNV8Nojri3eD5sIPZJ--l06Sl6ZJVP8OzuvkTf3i9urj4Wy88frq_my0I3dTsUHbeitp0yghDdWsaMpkJxW-sauoYBE4pYxbjolLJGVaalDbNkTY1hjaWqukRvT777cb0DoyEMUXm5j26n4lH2ysl_X4LbyO_9QTZNVzdtmw1e3RnE_scIaZA7lzR4rwL0Y5JUUJrnzRjL0pf3pNt-jCHHkxMRUtWcTIb1SaXzIFIEe26GEjlxlFt54virSpJaZo657MXfQc5Fv8H9SQp5nAcHUSbtIOgMJ4IepOnd_364b6C9ywyVv4UjpHMWKhOTRK6mXZpWifKKsKbtqp9MecX4</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Christine, Paul J., MPH</creator><creator>Young, Rebekah, PhD</creator><creator>Adar, Sara D., ScD, MHS</creator><creator>Bertoni, Alain G., MD, MPH</creator><creator>Heisler, Michele, MD</creator><creator>Carnethon, Mercedes R., PhD</creator><creator>Hayward, Rodney A., MD</creator><creator>Diez Roux, Ana V., MD, PhD</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170801</creationdate><title>Individual- and Area-Level SES in Diabetes Risk Prediction: The Multi-Ethnic Study of Atherosclerosis</title><author>Christine, Paul J., MPH ; Young, Rebekah, PhD ; Adar, Sara D., ScD, MHS ; Bertoni, Alain G., MD, MPH ; Heisler, Michele, MD ; Carnethon, Mercedes R., PhD ; Hayward, Rodney A., MD ; Diez Roux, Ana V., MD, PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-87f94f8ad900c6f22dc19a7f4c4e852e29a0fa2798aafda3d6152f0b1dd25f1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aged</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis - epidemiology</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2 - epidemiology</topic><topic>Diabetes Mellitus, Type 2 - prevention & control</topic><topic>Diabetics</topic><topic>Discrimination</topic><topic>Ethnicity - statistics & numerical data</topic><topic>Female</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multiracial people</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Proportional Hazards Models</topic><topic>Prospective Studies</topic><topic>Risk</topic><topic>Risk Assessment - methods</topic><topic>Risk Assessment - statistics & numerical data</topic><topic>Risk Factors</topic><topic>Social Class</topic><topic>Socioeconomic status</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christine, Paul J., MPH</creatorcontrib><creatorcontrib>Young, Rebekah, PhD</creatorcontrib><creatorcontrib>Adar, Sara D., ScD, MHS</creatorcontrib><creatorcontrib>Bertoni, Alain G., MD, MPH</creatorcontrib><creatorcontrib>Heisler, Michele, MD</creatorcontrib><creatorcontrib>Carnethon, Mercedes R., PhD</creatorcontrib><creatorcontrib>Hayward, Rodney A., MD</creatorcontrib><creatorcontrib>Diez Roux, Ana V., MD, PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of preventive medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christine, Paul J., MPH</au><au>Young, Rebekah, PhD</au><au>Adar, Sara D., ScD, MHS</au><au>Bertoni, Alain G., MD, MPH</au><au>Heisler, Michele, MD</au><au>Carnethon, Mercedes R., PhD</au><au>Hayward, Rodney A., MD</au><au>Diez Roux, Ana V., MD, PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individual- and Area-Level SES in Diabetes Risk Prediction: The Multi-Ethnic Study of Atherosclerosis</atitle><jtitle>American journal of preventive medicine</jtitle><addtitle>Am J Prev Med</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>53</volume><issue>2</issue><spage>201</spage><epage>209</epage><pages>201-209</pages><issn>0749-3797</issn><eissn>1873-2607</eissn><abstract>Introduction The purpose of this study was to evaluate if adding SES to risk prediction models based upon traditional risk factors improves the prediction of diabetes. Methods Risk prediction models without and with individual- and area-level SES predictors were compared using the prospective Multi-Ethnic Study of Atherosclerosis. Cox proportional hazards models were utilized to estimate hazard ratios for SES predictors and to generate 10-year predicted risks for 5,021 individuals without diabetes at baseline followed from 2000 to 2012. C-statistics were used to compare model discrimination, and the proportion of individuals reclassified into higher or lower risk categories with the addition of SES predictors was calculated. The accuracy of risk prediction by SES was assessed by comparing observed and predicted risks across tertiles of the SES variables. Statistical analyses were performed in 2015–2016. Results Over a median of 9.2 years of follow-up, 615 individuals developed diabetes. Individual- and area-level SES variables did not significantly improve model discrimination or reclassify substantial numbers of individuals across risk categories. Models without SES predictors generally underestimated risk for low-SES individuals or individuals residing in low-SES areas (underestimates ranging from 0.31% to 1.07%) and overestimated risk for high-SES individuals or individuals residing in high-SES areas (overestimates ranging from 0.70% to 1.30%), and the addition of SES variables largely mitigated these differences. Conclusions Standard diabetes risk models may underestimate risk for low-SES individuals and overestimate risk for those of high SES. Adding SES predictors helps correct this systematic misestimation, but may not improve model discrimination.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>28625713</pmid><doi>10.1016/j.amepre.2017.04.019</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-3797 |
ispartof | American journal of preventive medicine, 2017-08, Vol.53 (2), p.201-209 |
issn | 0749-3797 1873-2607 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5584566 |
source | Applied Social Sciences Index & Abstracts (ASSIA); MEDLINE; Elsevier ScienceDirect Journals |
subjects | Aged Atherosclerosis Atherosclerosis - epidemiology Diabetes Diabetes Mellitus, Type 2 - epidemiology Diabetes Mellitus, Type 2 - prevention & control Diabetics Discrimination Ethnicity - statistics & numerical data Female Humans Internal Medicine Male Middle Aged Multiracial people Prediction models Predictions Proportional Hazards Models Prospective Studies Risk Risk Assessment - methods Risk Assessment - statistics & numerical data Risk Factors Social Class Socioeconomic status Variables |
title | Individual- and Area-Level SES in Diabetes Risk Prediction: The Multi-Ethnic Study of Atherosclerosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individual-%20and%20Area-Level%20SES%20in%20Diabetes%20Risk%20Prediction:%20The%20Multi-Ethnic%20Study%20of%20Atherosclerosis&rft.jtitle=American%20journal%20of%20preventive%20medicine&rft.au=Christine,%20Paul%20J.,%20MPH&rft.date=2017-08-01&rft.volume=53&rft.issue=2&rft.spage=201&rft.epage=209&rft.pages=201-209&rft.issn=0749-3797&rft.eissn=1873-2607&rft_id=info:doi/10.1016/j.amepre.2017.04.019&rft_dat=%3Cproquest_pubme%3E2017034706%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017034706&rft_id=info:pmid/28625713&rft_els_id=S0749379717302568&rfr_iscdi=true |