Individual- and Area-Level SES in Diabetes Risk Prediction: The Multi-Ethnic Study of Atherosclerosis

Introduction The purpose of this study was to evaluate if adding SES to risk prediction models based upon traditional risk factors improves the prediction of diabetes. Methods Risk prediction models without and with individual- and area-level SES predictors were compared using the prospective Multi-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of preventive medicine 2017-08, Vol.53 (2), p.201-209
Hauptverfasser: Christine, Paul J., MPH, Young, Rebekah, PhD, Adar, Sara D., ScD, MHS, Bertoni, Alain G., MD, MPH, Heisler, Michele, MD, Carnethon, Mercedes R., PhD, Hayward, Rodney A., MD, Diez Roux, Ana V., MD, PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 209
container_issue 2
container_start_page 201
container_title American journal of preventive medicine
container_volume 53
creator Christine, Paul J., MPH
Young, Rebekah, PhD
Adar, Sara D., ScD, MHS
Bertoni, Alain G., MD, MPH
Heisler, Michele, MD
Carnethon, Mercedes R., PhD
Hayward, Rodney A., MD
Diez Roux, Ana V., MD, PhD
description Introduction The purpose of this study was to evaluate if adding SES to risk prediction models based upon traditional risk factors improves the prediction of diabetes. Methods Risk prediction models without and with individual- and area-level SES predictors were compared using the prospective Multi-Ethnic Study of Atherosclerosis. Cox proportional hazards models were utilized to estimate hazard ratios for SES predictors and to generate 10-year predicted risks for 5,021 individuals without diabetes at baseline followed from 2000 to 2012. C-statistics were used to compare model discrimination, and the proportion of individuals reclassified into higher or lower risk categories with the addition of SES predictors was calculated. The accuracy of risk prediction by SES was assessed by comparing observed and predicted risks across tertiles of the SES variables. Statistical analyses were performed in 2015–2016. Results Over a median of 9.2 years of follow-up, 615 individuals developed diabetes. Individual- and area-level SES variables did not significantly improve model discrimination or reclassify substantial numbers of individuals across risk categories. Models without SES predictors generally underestimated risk for low-SES individuals or individuals residing in low-SES areas (underestimates ranging from 0.31% to 1.07%) and overestimated risk for high-SES individuals or individuals residing in high-SES areas (overestimates ranging from 0.70% to 1.30%), and the addition of SES variables largely mitigated these differences. Conclusions Standard diabetes risk models may underestimate risk for low-SES individuals and overestimate risk for those of high SES. Adding SES predictors helps correct this systematic misestimation, but may not improve model discrimination.
doi_str_mv 10.1016/j.amepre.2017.04.019
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5584566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749379717302568</els_id><sourcerecordid>2017034706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-87f94f8ad900c6f22dc19a7f4c4e852e29a0fa2798aafda3d6152f0b1dd25f1a3</originalsourceid><addsrcrecordid>eNqFkl-PEyEUxYnRuHX1GxhD4osvMwLzh8EHk2atukmNxq7PhMLF0qVMhZkm_fYydq26L77AA-ce7rm_i9BzSkpKaPt6W6od7COUjFBekrokVDxAM9rxqmAt4Q_RjPBaFBUX_AI9SWlLCOEdFY_RBeta1nBazRBcB-MOzozKF1gFg-cRVLGEA3i8WqywC_idU2sYIOGvLt3iLxGM04Prwxt8swH8afSDKxbDJjiNV8Nojri3eD5sIPZJ--l06Sl6ZJVP8OzuvkTf3i9urj4Wy88frq_my0I3dTsUHbeitp0yghDdWsaMpkJxW-sauoYBE4pYxbjolLJGVaalDbNkTY1hjaWqukRvT777cb0DoyEMUXm5j26n4lH2ysl_X4LbyO_9QTZNVzdtmw1e3RnE_scIaZA7lzR4rwL0Y5JUUJrnzRjL0pf3pNt-jCHHkxMRUtWcTIb1SaXzIFIEe26GEjlxlFt54virSpJaZo657MXfQc5Fv8H9SQp5nAcHUSbtIOgMJ4IepOnd_364b6C9ywyVv4UjpHMWKhOTRK6mXZpWifKKsKbtqp9MecX4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017034706</pqid></control><display><type>article</type><title>Individual- and Area-Level SES in Diabetes Risk Prediction: The Multi-Ethnic Study of Atherosclerosis</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Christine, Paul J., MPH ; Young, Rebekah, PhD ; Adar, Sara D., ScD, MHS ; Bertoni, Alain G., MD, MPH ; Heisler, Michele, MD ; Carnethon, Mercedes R., PhD ; Hayward, Rodney A., MD ; Diez Roux, Ana V., MD, PhD</creator><creatorcontrib>Christine, Paul J., MPH ; Young, Rebekah, PhD ; Adar, Sara D., ScD, MHS ; Bertoni, Alain G., MD, MPH ; Heisler, Michele, MD ; Carnethon, Mercedes R., PhD ; Hayward, Rodney A., MD ; Diez Roux, Ana V., MD, PhD</creatorcontrib><description>Introduction The purpose of this study was to evaluate if adding SES to risk prediction models based upon traditional risk factors improves the prediction of diabetes. Methods Risk prediction models without and with individual- and area-level SES predictors were compared using the prospective Multi-Ethnic Study of Atherosclerosis. Cox proportional hazards models were utilized to estimate hazard ratios for SES predictors and to generate 10-year predicted risks for 5,021 individuals without diabetes at baseline followed from 2000 to 2012. C-statistics were used to compare model discrimination, and the proportion of individuals reclassified into higher or lower risk categories with the addition of SES predictors was calculated. The accuracy of risk prediction by SES was assessed by comparing observed and predicted risks across tertiles of the SES variables. Statistical analyses were performed in 2015–2016. Results Over a median of 9.2 years of follow-up, 615 individuals developed diabetes. Individual- and area-level SES variables did not significantly improve model discrimination or reclassify substantial numbers of individuals across risk categories. Models without SES predictors generally underestimated risk for low-SES individuals or individuals residing in low-SES areas (underestimates ranging from 0.31% to 1.07%) and overestimated risk for high-SES individuals or individuals residing in high-SES areas (overestimates ranging from 0.70% to 1.30%), and the addition of SES variables largely mitigated these differences. Conclusions Standard diabetes risk models may underestimate risk for low-SES individuals and overestimate risk for those of high SES. Adding SES predictors helps correct this systematic misestimation, but may not improve model discrimination.</description><identifier>ISSN: 0749-3797</identifier><identifier>EISSN: 1873-2607</identifier><identifier>DOI: 10.1016/j.amepre.2017.04.019</identifier><identifier>PMID: 28625713</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Aged ; Atherosclerosis ; Atherosclerosis - epidemiology ; Diabetes ; Diabetes Mellitus, Type 2 - epidemiology ; Diabetes Mellitus, Type 2 - prevention &amp; control ; Diabetics ; Discrimination ; Ethnicity - statistics &amp; numerical data ; Female ; Humans ; Internal Medicine ; Male ; Middle Aged ; Multiracial people ; Prediction models ; Predictions ; Proportional Hazards Models ; Prospective Studies ; Risk ; Risk Assessment - methods ; Risk Assessment - statistics &amp; numerical data ; Risk Factors ; Social Class ; Socioeconomic status ; Variables</subject><ispartof>American journal of preventive medicine, 2017-08, Vol.53 (2), p.201-209</ispartof><rights>2017</rights><rights>Copyright © 2017. Published by Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Aug 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-87f94f8ad900c6f22dc19a7f4c4e852e29a0fa2798aafda3d6152f0b1dd25f1a3</citedby><cites>FETCH-LOGICAL-c546t-87f94f8ad900c6f22dc19a7f4c4e852e29a0fa2798aafda3d6152f0b1dd25f1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0749379717302568$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,30976,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28625713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Christine, Paul J., MPH</creatorcontrib><creatorcontrib>Young, Rebekah, PhD</creatorcontrib><creatorcontrib>Adar, Sara D., ScD, MHS</creatorcontrib><creatorcontrib>Bertoni, Alain G., MD, MPH</creatorcontrib><creatorcontrib>Heisler, Michele, MD</creatorcontrib><creatorcontrib>Carnethon, Mercedes R., PhD</creatorcontrib><creatorcontrib>Hayward, Rodney A., MD</creatorcontrib><creatorcontrib>Diez Roux, Ana V., MD, PhD</creatorcontrib><title>Individual- and Area-Level SES in Diabetes Risk Prediction: The Multi-Ethnic Study of Atherosclerosis</title><title>American journal of preventive medicine</title><addtitle>Am J Prev Med</addtitle><description>Introduction The purpose of this study was to evaluate if adding SES to risk prediction models based upon traditional risk factors improves the prediction of diabetes. Methods Risk prediction models without and with individual- and area-level SES predictors were compared using the prospective Multi-Ethnic Study of Atherosclerosis. Cox proportional hazards models were utilized to estimate hazard ratios for SES predictors and to generate 10-year predicted risks for 5,021 individuals without diabetes at baseline followed from 2000 to 2012. C-statistics were used to compare model discrimination, and the proportion of individuals reclassified into higher or lower risk categories with the addition of SES predictors was calculated. The accuracy of risk prediction by SES was assessed by comparing observed and predicted risks across tertiles of the SES variables. Statistical analyses were performed in 2015–2016. Results Over a median of 9.2 years of follow-up, 615 individuals developed diabetes. Individual- and area-level SES variables did not significantly improve model discrimination or reclassify substantial numbers of individuals across risk categories. Models without SES predictors generally underestimated risk for low-SES individuals or individuals residing in low-SES areas (underestimates ranging from 0.31% to 1.07%) and overestimated risk for high-SES individuals or individuals residing in high-SES areas (overestimates ranging from 0.70% to 1.30%), and the addition of SES variables largely mitigated these differences. Conclusions Standard diabetes risk models may underestimate risk for low-SES individuals and overestimate risk for those of high SES. Adding SES predictors helps correct this systematic misestimation, but may not improve model discrimination.</description><subject>Aged</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis - epidemiology</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2 - epidemiology</subject><subject>Diabetes Mellitus, Type 2 - prevention &amp; control</subject><subject>Diabetics</subject><subject>Discrimination</subject><subject>Ethnicity - statistics &amp; numerical data</subject><subject>Female</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multiracial people</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Proportional Hazards Models</subject><subject>Prospective Studies</subject><subject>Risk</subject><subject>Risk Assessment - methods</subject><subject>Risk Assessment - statistics &amp; numerical data</subject><subject>Risk Factors</subject><subject>Social Class</subject><subject>Socioeconomic status</subject><subject>Variables</subject><issn>0749-3797</issn><issn>1873-2607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNqFkl-PEyEUxYnRuHX1GxhD4osvMwLzh8EHk2atukmNxq7PhMLF0qVMhZkm_fYydq26L77AA-ce7rm_i9BzSkpKaPt6W6od7COUjFBekrokVDxAM9rxqmAt4Q_RjPBaFBUX_AI9SWlLCOEdFY_RBeta1nBazRBcB-MOzozKF1gFg-cRVLGEA3i8WqywC_idU2sYIOGvLt3iLxGM04Prwxt8swH8afSDKxbDJjiNV8Nojri3eD5sIPZJ--l06Sl6ZJVP8OzuvkTf3i9urj4Wy88frq_my0I3dTsUHbeitp0yghDdWsaMpkJxW-sauoYBE4pYxbjolLJGVaalDbNkTY1hjaWqukRvT777cb0DoyEMUXm5j26n4lH2ysl_X4LbyO_9QTZNVzdtmw1e3RnE_scIaZA7lzR4rwL0Y5JUUJrnzRjL0pf3pNt-jCHHkxMRUtWcTIb1SaXzIFIEe26GEjlxlFt54virSpJaZo657MXfQc5Fv8H9SQp5nAcHUSbtIOgMJ4IepOnd_364b6C9ywyVv4UjpHMWKhOTRK6mXZpWifKKsKbtqp9MecX4</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Christine, Paul J., MPH</creator><creator>Young, Rebekah, PhD</creator><creator>Adar, Sara D., ScD, MHS</creator><creator>Bertoni, Alain G., MD, MPH</creator><creator>Heisler, Michele, MD</creator><creator>Carnethon, Mercedes R., PhD</creator><creator>Hayward, Rodney A., MD</creator><creator>Diez Roux, Ana V., MD, PhD</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170801</creationdate><title>Individual- and Area-Level SES in Diabetes Risk Prediction: The Multi-Ethnic Study of Atherosclerosis</title><author>Christine, Paul J., MPH ; Young, Rebekah, PhD ; Adar, Sara D., ScD, MHS ; Bertoni, Alain G., MD, MPH ; Heisler, Michele, MD ; Carnethon, Mercedes R., PhD ; Hayward, Rodney A., MD ; Diez Roux, Ana V., MD, PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-87f94f8ad900c6f22dc19a7f4c4e852e29a0fa2798aafda3d6152f0b1dd25f1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aged</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis - epidemiology</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2 - epidemiology</topic><topic>Diabetes Mellitus, Type 2 - prevention &amp; control</topic><topic>Diabetics</topic><topic>Discrimination</topic><topic>Ethnicity - statistics &amp; numerical data</topic><topic>Female</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multiracial people</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Proportional Hazards Models</topic><topic>Prospective Studies</topic><topic>Risk</topic><topic>Risk Assessment - methods</topic><topic>Risk Assessment - statistics &amp; numerical data</topic><topic>Risk Factors</topic><topic>Social Class</topic><topic>Socioeconomic status</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christine, Paul J., MPH</creatorcontrib><creatorcontrib>Young, Rebekah, PhD</creatorcontrib><creatorcontrib>Adar, Sara D., ScD, MHS</creatorcontrib><creatorcontrib>Bertoni, Alain G., MD, MPH</creatorcontrib><creatorcontrib>Heisler, Michele, MD</creatorcontrib><creatorcontrib>Carnethon, Mercedes R., PhD</creatorcontrib><creatorcontrib>Hayward, Rodney A., MD</creatorcontrib><creatorcontrib>Diez Roux, Ana V., MD, PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of preventive medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christine, Paul J., MPH</au><au>Young, Rebekah, PhD</au><au>Adar, Sara D., ScD, MHS</au><au>Bertoni, Alain G., MD, MPH</au><au>Heisler, Michele, MD</au><au>Carnethon, Mercedes R., PhD</au><au>Hayward, Rodney A., MD</au><au>Diez Roux, Ana V., MD, PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individual- and Area-Level SES in Diabetes Risk Prediction: The Multi-Ethnic Study of Atherosclerosis</atitle><jtitle>American journal of preventive medicine</jtitle><addtitle>Am J Prev Med</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>53</volume><issue>2</issue><spage>201</spage><epage>209</epage><pages>201-209</pages><issn>0749-3797</issn><eissn>1873-2607</eissn><abstract>Introduction The purpose of this study was to evaluate if adding SES to risk prediction models based upon traditional risk factors improves the prediction of diabetes. Methods Risk prediction models without and with individual- and area-level SES predictors were compared using the prospective Multi-Ethnic Study of Atherosclerosis. Cox proportional hazards models were utilized to estimate hazard ratios for SES predictors and to generate 10-year predicted risks for 5,021 individuals without diabetes at baseline followed from 2000 to 2012. C-statistics were used to compare model discrimination, and the proportion of individuals reclassified into higher or lower risk categories with the addition of SES predictors was calculated. The accuracy of risk prediction by SES was assessed by comparing observed and predicted risks across tertiles of the SES variables. Statistical analyses were performed in 2015–2016. Results Over a median of 9.2 years of follow-up, 615 individuals developed diabetes. Individual- and area-level SES variables did not significantly improve model discrimination or reclassify substantial numbers of individuals across risk categories. Models without SES predictors generally underestimated risk for low-SES individuals or individuals residing in low-SES areas (underestimates ranging from 0.31% to 1.07%) and overestimated risk for high-SES individuals or individuals residing in high-SES areas (overestimates ranging from 0.70% to 1.30%), and the addition of SES variables largely mitigated these differences. Conclusions Standard diabetes risk models may underestimate risk for low-SES individuals and overestimate risk for those of high SES. Adding SES predictors helps correct this systematic misestimation, but may not improve model discrimination.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>28625713</pmid><doi>10.1016/j.amepre.2017.04.019</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0749-3797
ispartof American journal of preventive medicine, 2017-08, Vol.53 (2), p.201-209
issn 0749-3797
1873-2607
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5584566
source Applied Social Sciences Index & Abstracts (ASSIA); MEDLINE; Elsevier ScienceDirect Journals
subjects Aged
Atherosclerosis
Atherosclerosis - epidemiology
Diabetes
Diabetes Mellitus, Type 2 - epidemiology
Diabetes Mellitus, Type 2 - prevention & control
Diabetics
Discrimination
Ethnicity - statistics & numerical data
Female
Humans
Internal Medicine
Male
Middle Aged
Multiracial people
Prediction models
Predictions
Proportional Hazards Models
Prospective Studies
Risk
Risk Assessment - methods
Risk Assessment - statistics & numerical data
Risk Factors
Social Class
Socioeconomic status
Variables
title Individual- and Area-Level SES in Diabetes Risk Prediction: The Multi-Ethnic Study of Atherosclerosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individual-%20and%20Area-Level%20SES%20in%20Diabetes%20Risk%20Prediction:%20The%20Multi-Ethnic%20Study%20of%20Atherosclerosis&rft.jtitle=American%20journal%20of%20preventive%20medicine&rft.au=Christine,%20Paul%20J.,%20MPH&rft.date=2017-08-01&rft.volume=53&rft.issue=2&rft.spage=201&rft.epage=209&rft.pages=201-209&rft.issn=0749-3797&rft.eissn=1873-2607&rft_id=info:doi/10.1016/j.amepre.2017.04.019&rft_dat=%3Cproquest_pubme%3E2017034706%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017034706&rft_id=info:pmid/28625713&rft_els_id=S0749379717302568&rfr_iscdi=true