Curcumin induces G2/M cell cycle arrest and apoptosis of head and neck squamous cell carcinoma in vitro and in vivo through ATM/Chk2/p53-dependent pathway

Studies have demonstrated that curcumin (CUR) exerts its tumor suppressor function in a variety of human cancers including head and neck squamous cell carcinoma (HNSCC). However, the exact underlying molecular mechanisms remain obscure. Here, we aim to test whether CUR affects ATM/Chk2/p53 signaling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncotarget 2017-08, Vol.8 (31), p.50747-50760
Hauptverfasser: Hu, An, Huang, Jing-Juan, Zhang, Jing-Fei, Dai, Wei-Jun, Li, Rui-Lin, Lu, Zhao-Yang, Duan, Jun-Li, Li, Ji-Ping, Chen, Xiao-Ping, Fan, Jing-Ping, Xu, Wei-Hua, Zheng, Hong-Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies have demonstrated that curcumin (CUR) exerts its tumor suppressor function in a variety of human cancers including head and neck squamous cell carcinoma (HNSCC). However, the exact underlying molecular mechanisms remain obscure. Here, we aim to test whether CUR affects ATM/Chk2/p53 signaling pathway, leading to the induction of cell cycle arrest, inhibition of angiogenesis of HNSCC and . To this end, we conducted multiple methods such as MTT assay, Invasion assay, Flow cytometry, Western blotting, RT-PCR, and transfection to explore the functions and molecular insights of CUR in HNSCC. We observed that CUR significantly induced apoptosis and cell cycle arrest, inhibited angiogenesis in HNSCC. Mechanistically, we demonstrated that CUR markedly up-regulated ATM expression and subsequently down-regulated HIF-1α expression. Blockage of ATM production totally reversed CUR induced cell cycle arrest as well as anti-angiogenesis in HNSCC. Moreover, our results demonstrated that CUR exerts its antitumor activity through targeting ATM/Chk2/p53 signal pathway. In addition, the results of xenograft experiments in mice were highly consistent with studies. Collectively, our findings suggest that targeting ATM/Chk2/p53 signal pathway by CUR could be a promising therapeutic approach for HNSCC prevention and therapy.
ISSN:1949-2553
1949-2553
DOI:10.18632/oncotarget.17096