Molecular Mechanism and Genetic Determinants of Buprofezin Degradation

Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and nontarget insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant cata...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and environmental microbiology 2017-09, Vol.83 (18)
Hauptverfasser: Chen, Xueting, Ji, Junbin, Zhao, Leizhen, Qiu, Jiguo, Dai, Chen, Wang, Weiwu, He, Jian, Jiang, Jiandong, Hong, Qing, Yan, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and nontarget insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. YL-1 can utilize buprofezin as a sole source of carbon and energy for growth. In this study, the upstream catabolic pathway in strain YL-1 was identified using tandem mass spectrometry. Buprofezin is composed of a benzene ring and a heterocyclic ring. The degradation is initiated by the dihydroxylation of the benzene ring and continues via dehydrogenation, aromatic ring cleavage, breaking of an amide bond, and the release of the heterocyclic ring 2- -butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one (2-BI). A buprofezin degradation-deficient mutant strain YL-0 was isolated. A comparative genomic analysis combined with gene deletion and complementation experiments revealed that the gene cluster is responsible for the upstream catabolic pathway of buprofezin. The cluster encodes a novel Rieske nonheme iron oxygenase (RHO) system that is responsible for the dihydroxylation of buprofezin at the benzene ring; is involved in dehydrogenation, and is in charge of benzene ring cleavage. Furthermore, the products of can also catalyze dihydroxylation, dehydrogenation, and aromatic ring cleavage of biphenyl, flavanone, flavone, and bifenthrin. In addition, a transcriptional study revealed that is organized in one transcriptional unit that is constitutively expressed in strain YL-1. There is an increasing concern about the residue and environmental fate of buprofezin. Microbial metabolism is an important mechanism responsible for the buprofezin degradation in the natural environment. However, the molecular mechanism and genetic determinants of microbial degradation of buprofezin have not been well identified. This work revealed that gene cluster is responsible for the upstream catabolic pathway of buprofezin in YL-1. The products of could also degrade bifenthrin, a widely used pyrethroid insecticide. These findings enhance our understanding of the microbial degradation mechanism of buprofezin and benefit the application of strain YL-1 and in the bioremediation of buprofezin contamination.
ISSN:0099-2240
1098-5336
DOI:10.1128/AEM.00868-17