A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme

Traditional radiomics models mainly rely on explicitly-designed handcrafted features from medical images. This paper aimed to investigate if deep features extracted via transfer learning can generate radiomics signatures for prediction of overall survival (OS) in patients with Glioblastoma Multiform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-09, Vol.7 (1), p.10353-8, Article 10353
Hauptverfasser: Lao, Jiangwei, Chen, Yinsheng, Li, Zhi-Cheng, Li, Qihua, Zhang, Ji, Liu, Jing, Zhai, Guangtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 1
container_start_page 10353
container_title Scientific reports
container_volume 7
creator Lao, Jiangwei
Chen, Yinsheng
Li, Zhi-Cheng
Li, Qihua
Zhang, Ji
Liu, Jing
Zhai, Guangtao
description Traditional radiomics models mainly rely on explicitly-designed handcrafted features from medical images. This paper aimed to investigate if deep features extracted via transfer learning can generate radiomics signatures for prediction of overall survival (OS) in patients with Glioblastoma Multiforme (GBM). This study comprised a discovery data set of 75 patients and an independent validation data set of 37 patients. A total of 1403 handcrafted features and 98304 deep features were extracted from preoperative multi-modality MR images. After feature selection, a six-deep-feature signature was constructed by using the least absolute shrinkage and selection operator (LASSO) Cox regression model. A radiomics nomogram was further presented by combining the signature and clinical risk factors such as age and Karnofsky Performance Score. Compared with traditional risk factors, the proposed signature achieved better performance for prediction of OS (C-index = 0.710, 95% CI: 0.588, 0.932) and significant stratification of patients into prognostically distinct groups (P 
doi_str_mv 10.1038/s41598-017-10649-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5583361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957706060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-6396fcdf614f9041e375239c8fac6972fade895ecf25e76e467252f7cdcef4c43</originalsourceid><addsrcrecordid>eNp1kU1rVTEQhoNYbKn9Ay4k4MbN0XyeJBuhVq3CLRU_Vi5CmjO5ppyT3CbnXPDfG721XAudLGbIPPMmw4vQM0peUcL16yqoNLojVHWU9MJ0-hE6YkTIjnHGHu_Vh-ik1mvSQjIjqHmCDpnWilJKjtCPU_wOYINX4EqKad29dRUG_MUNMU_RV3yRBxhxyAV_LjBEP8eccA7461K2cetGHBM-H2O-Gl2d8-TwxTLOsfETPEUHwY0VTm7zMfr-4f23s4_d6vL809npqvNSkLnruemDH0JPRTBEUOBKMm68Ds73RrHgBtBGgg9MgupB9IpJFpQfPAThBT9Gb3a6m-Vqgnab5uJGuylxcuWXzS7a_zsp_rTrvLVSas572gRe3gqUfLNAne0Uq4dxdAnyUi01XGoqpFENfXEPvc5LSW29RkmlSN9Oo9iO8iXXWiDcfYYS-8c-u7PPNvvsX_usbkPP99e4G_lnVgP4DqitldZQ9t5-WPY3CoamIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957706060</pqid></control><display><type>article</type><title>A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Lao, Jiangwei ; Chen, Yinsheng ; Li, Zhi-Cheng ; Li, Qihua ; Zhang, Ji ; Liu, Jing ; Zhai, Guangtao</creator><creatorcontrib>Lao, Jiangwei ; Chen, Yinsheng ; Li, Zhi-Cheng ; Li, Qihua ; Zhang, Ji ; Liu, Jing ; Zhai, Guangtao</creatorcontrib><description>Traditional radiomics models mainly rely on explicitly-designed handcrafted features from medical images. This paper aimed to investigate if deep features extracted via transfer learning can generate radiomics signatures for prediction of overall survival (OS) in patients with Glioblastoma Multiforme (GBM). This study comprised a discovery data set of 75 patients and an independent validation data set of 37 patients. A total of 1403 handcrafted features and 98304 deep features were extracted from preoperative multi-modality MR images. After feature selection, a six-deep-feature signature was constructed by using the least absolute shrinkage and selection operator (LASSO) Cox regression model. A radiomics nomogram was further presented by combining the signature and clinical risk factors such as age and Karnofsky Performance Score. Compared with traditional risk factors, the proposed signature achieved better performance for prediction of OS (C-index = 0.710, 95% CI: 0.588, 0.932) and significant stratification of patients into prognostically distinct groups (P &lt; 0.001, HR = 5.128, 95% CI: 2.029, 12.960). The combined model achieved improved predictive performance (C-index = 0.739). Our study demonstrates that transfer learning-based deep features are able to generate prognostic imaging signature for OS prediction and patient stratification for GBM, indicating the potential of deep imaging feature-based biomarker in preoperative care of GBM patients.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-10649-8</identifier><identifier>PMID: 28871110</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>59/57 ; 631/114/1305 ; 631/114/1564 ; 639/166/985 ; Adolescent ; Adult ; Aged ; Aged, 80 and over ; Algorithms ; Archives &amp; records ; Brain cancer ; Cancer ; Child ; Datasets ; Deep Learning ; Edema ; Feature selection ; Female ; Geometry ; Glioblastoma ; Glioblastoma - diagnostic imaging ; Glioblastoma - mortality ; Humanities and Social Sciences ; Humans ; Image Interpretation, Computer-Assisted ; Image Processing, Computer-Assisted ; Kaplan-Meier Estimate ; Magnetic Resonance Imaging - methods ; Male ; Medical imaging ; Medical prognosis ; Middle Aged ; Models, Theoretical ; multidisciplinary ; Neural networks ; Nomograms ; Oncology ; Open source software ; Patients ; Prognosis ; Public domain ; Radiomics ; Reproducibility of Results ; Risk factors ; ROC Curve ; Science ; Science (multidisciplinary) ; Survival ; Transfer learning ; Young Adult</subject><ispartof>Scientific reports, 2017-09, Vol.7 (1), p.10353-8, Article 10353</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-6396fcdf614f9041e375239c8fac6972fade895ecf25e76e467252f7cdcef4c43</citedby><cites>FETCH-LOGICAL-c540t-6396fcdf614f9041e375239c8fac6972fade895ecf25e76e467252f7cdcef4c43</cites><orcidid>0000-0001-8165-9322 ; 0000-0003-4140-0580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5583361/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5583361/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28871110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lao, Jiangwei</creatorcontrib><creatorcontrib>Chen, Yinsheng</creatorcontrib><creatorcontrib>Li, Zhi-Cheng</creatorcontrib><creatorcontrib>Li, Qihua</creatorcontrib><creatorcontrib>Zhang, Ji</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Zhai, Guangtao</creatorcontrib><title>A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Traditional radiomics models mainly rely on explicitly-designed handcrafted features from medical images. This paper aimed to investigate if deep features extracted via transfer learning can generate radiomics signatures for prediction of overall survival (OS) in patients with Glioblastoma Multiforme (GBM). This study comprised a discovery data set of 75 patients and an independent validation data set of 37 patients. A total of 1403 handcrafted features and 98304 deep features were extracted from preoperative multi-modality MR images. After feature selection, a six-deep-feature signature was constructed by using the least absolute shrinkage and selection operator (LASSO) Cox regression model. A radiomics nomogram was further presented by combining the signature and clinical risk factors such as age and Karnofsky Performance Score. Compared with traditional risk factors, the proposed signature achieved better performance for prediction of OS (C-index = 0.710, 95% CI: 0.588, 0.932) and significant stratification of patients into prognostically distinct groups (P &lt; 0.001, HR = 5.128, 95% CI: 2.029, 12.960). The combined model achieved improved predictive performance (C-index = 0.739). Our study demonstrates that transfer learning-based deep features are able to generate prognostic imaging signature for OS prediction and patient stratification for GBM, indicating the potential of deep imaging feature-based biomarker in preoperative care of GBM patients.</description><subject>59/57</subject><subject>631/114/1305</subject><subject>631/114/1564</subject><subject>639/166/985</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Archives &amp; records</subject><subject>Brain cancer</subject><subject>Cancer</subject><subject>Child</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Edema</subject><subject>Feature selection</subject><subject>Female</subject><subject>Geometry</subject><subject>Glioblastoma</subject><subject>Glioblastoma - diagnostic imaging</subject><subject>Glioblastoma - mortality</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image Processing, Computer-Assisted</subject><subject>Kaplan-Meier Estimate</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medical prognosis</subject><subject>Middle Aged</subject><subject>Models, Theoretical</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Nomograms</subject><subject>Oncology</subject><subject>Open source software</subject><subject>Patients</subject><subject>Prognosis</subject><subject>Public domain</subject><subject>Radiomics</subject><subject>Reproducibility of Results</subject><subject>Risk factors</subject><subject>ROC Curve</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Survival</subject><subject>Transfer learning</subject><subject>Young Adult</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1rVTEQhoNYbKn9Ay4k4MbN0XyeJBuhVq3CLRU_Vi5CmjO5ppyT3CbnXPDfG721XAudLGbIPPMmw4vQM0peUcL16yqoNLojVHWU9MJ0-hE6YkTIjnHGHu_Vh-ik1mvSQjIjqHmCDpnWilJKjtCPU_wOYINX4EqKad29dRUG_MUNMU_RV3yRBxhxyAV_LjBEP8eccA7461K2cetGHBM-H2O-Gl2d8-TwxTLOsfETPEUHwY0VTm7zMfr-4f23s4_d6vL809npqvNSkLnruemDH0JPRTBEUOBKMm68Ds73RrHgBtBGgg9MgupB9IpJFpQfPAThBT9Gb3a6m-Vqgnab5uJGuylxcuWXzS7a_zsp_rTrvLVSas572gRe3gqUfLNAne0Uq4dxdAnyUi01XGoqpFENfXEPvc5LSW29RkmlSN9Oo9iO8iXXWiDcfYYS-8c-u7PPNvvsX_usbkPP99e4G_lnVgP4DqitldZQ9t5-WPY3CoamIw</recordid><startdate>20170904</startdate><enddate>20170904</enddate><creator>Lao, Jiangwei</creator><creator>Chen, Yinsheng</creator><creator>Li, Zhi-Cheng</creator><creator>Li, Qihua</creator><creator>Zhang, Ji</creator><creator>Liu, Jing</creator><creator>Zhai, Guangtao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8165-9322</orcidid><orcidid>https://orcid.org/0000-0003-4140-0580</orcidid></search><sort><creationdate>20170904</creationdate><title>A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme</title><author>Lao, Jiangwei ; Chen, Yinsheng ; Li, Zhi-Cheng ; Li, Qihua ; Zhang, Ji ; Liu, Jing ; Zhai, Guangtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-6396fcdf614f9041e375239c8fac6972fade895ecf25e76e467252f7cdcef4c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>59/57</topic><topic>631/114/1305</topic><topic>631/114/1564</topic><topic>639/166/985</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Archives &amp; records</topic><topic>Brain cancer</topic><topic>Cancer</topic><topic>Child</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Edema</topic><topic>Feature selection</topic><topic>Female</topic><topic>Geometry</topic><topic>Glioblastoma</topic><topic>Glioblastoma - diagnostic imaging</topic><topic>Glioblastoma - mortality</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image Processing, Computer-Assisted</topic><topic>Kaplan-Meier Estimate</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medical prognosis</topic><topic>Middle Aged</topic><topic>Models, Theoretical</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Nomograms</topic><topic>Oncology</topic><topic>Open source software</topic><topic>Patients</topic><topic>Prognosis</topic><topic>Public domain</topic><topic>Radiomics</topic><topic>Reproducibility of Results</topic><topic>Risk factors</topic><topic>ROC Curve</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Survival</topic><topic>Transfer learning</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lao, Jiangwei</creatorcontrib><creatorcontrib>Chen, Yinsheng</creatorcontrib><creatorcontrib>Li, Zhi-Cheng</creatorcontrib><creatorcontrib>Li, Qihua</creatorcontrib><creatorcontrib>Zhang, Ji</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Zhai, Guangtao</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lao, Jiangwei</au><au>Chen, Yinsheng</au><au>Li, Zhi-Cheng</au><au>Li, Qihua</au><au>Zhang, Ji</au><au>Liu, Jing</au><au>Zhai, Guangtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-09-04</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>10353</spage><epage>8</epage><pages>10353-8</pages><artnum>10353</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Traditional radiomics models mainly rely on explicitly-designed handcrafted features from medical images. This paper aimed to investigate if deep features extracted via transfer learning can generate radiomics signatures for prediction of overall survival (OS) in patients with Glioblastoma Multiforme (GBM). This study comprised a discovery data set of 75 patients and an independent validation data set of 37 patients. A total of 1403 handcrafted features and 98304 deep features were extracted from preoperative multi-modality MR images. After feature selection, a six-deep-feature signature was constructed by using the least absolute shrinkage and selection operator (LASSO) Cox regression model. A radiomics nomogram was further presented by combining the signature and clinical risk factors such as age and Karnofsky Performance Score. Compared with traditional risk factors, the proposed signature achieved better performance for prediction of OS (C-index = 0.710, 95% CI: 0.588, 0.932) and significant stratification of patients into prognostically distinct groups (P &lt; 0.001, HR = 5.128, 95% CI: 2.029, 12.960). The combined model achieved improved predictive performance (C-index = 0.739). Our study demonstrates that transfer learning-based deep features are able to generate prognostic imaging signature for OS prediction and patient stratification for GBM, indicating the potential of deep imaging feature-based biomarker in preoperative care of GBM patients.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28871110</pmid><doi>10.1038/s41598-017-10649-8</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8165-9322</orcidid><orcidid>https://orcid.org/0000-0003-4140-0580</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-09, Vol.7 (1), p.10353-8, Article 10353
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5583361
source Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 59/57
631/114/1305
631/114/1564
639/166/985
Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Archives & records
Brain cancer
Cancer
Child
Datasets
Deep Learning
Edema
Feature selection
Female
Geometry
Glioblastoma
Glioblastoma - diagnostic imaging
Glioblastoma - mortality
Humanities and Social Sciences
Humans
Image Interpretation, Computer-Assisted
Image Processing, Computer-Assisted
Kaplan-Meier Estimate
Magnetic Resonance Imaging - methods
Male
Medical imaging
Medical prognosis
Middle Aged
Models, Theoretical
multidisciplinary
Neural networks
Nomograms
Oncology
Open source software
Patients
Prognosis
Public domain
Radiomics
Reproducibility of Results
Risk factors
ROC Curve
Science
Science (multidisciplinary)
Survival
Transfer learning
Young Adult
title A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning-Based%20Radiomics%20Model%20for%20Prediction%20of%20Survival%20in%20Glioblastoma%20Multiforme&rft.jtitle=Scientific%20reports&rft.au=Lao,%20Jiangwei&rft.date=2017-09-04&rft.volume=7&rft.issue=1&rft.spage=10353&rft.epage=8&rft.pages=10353-8&rft.artnum=10353&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-10649-8&rft_dat=%3Cproquest_pubme%3E1957706060%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1957706060&rft_id=info:pmid/28871110&rfr_iscdi=true