EETs promote hypoxic pulmonary vasoconstriction via constrictor prostanoids

To test the hypothesis that epoxyeicosatrienoic acids (EETs) facilitate pulmonary responses to hypoxia, male wild-type (WT) and soluble-epoxide hydrolase knockout (sEH-KO) mice, and WT mice chronically fed a sEH inhibitor ( -TUCB; 1 mg·kg ·day ) were used. Right ventricular systolic pressure (RVSP)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Lung cellular and molecular physiology 2017-08, Vol.313 (2), p.L350-L359
Hauptverfasser: Kandhi, Sharath, Zhang, Bin, Froogh, Ghezal, Qin, Jun, Alruwaili, Norah, Le, Yicong, Yang, Yang-Ming, Hwang, Sung Hee, Hammock, Bruce D, Wolin, Michael S, Huang, An, Sun, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page L359
container_issue 2
container_start_page L350
container_title American journal of physiology. Lung cellular and molecular physiology
container_volume 313
creator Kandhi, Sharath
Zhang, Bin
Froogh, Ghezal
Qin, Jun
Alruwaili, Norah
Le, Yicong
Yang, Yang-Ming
Hwang, Sung Hee
Hammock, Bruce D
Wolin, Michael S
Huang, An
Sun, Dong
description To test the hypothesis that epoxyeicosatrienoic acids (EETs) facilitate pulmonary responses to hypoxia, male wild-type (WT) and soluble-epoxide hydrolase knockout (sEH-KO) mice, and WT mice chronically fed a sEH inhibitor ( -TUCB; 1 mg·kg ·day ) were used. Right ventricular systolic pressure (RVSP) was recorded under control and hypoxic conditions. The control RVSP was comparable among all groups. However, hypoxia elicited increases in RVSP in all groups with predominance in sEH-KO and -TUCB-treated mice. 14,15-EEZE (an EET antagonist) attenuated the hypoxia-induced greater elevation of RVSP in sEH-deficient mice, suggesting an EET-mediated increment. Exogenous 5,6-; 8,9-, or 14,15-EET (0.05 ng/g body wt) did not change RVSP in any conditions, but 11,12-EET enhanced RVSP under hypoxia. Isometric tension was recorded from pulmonary arteries isolated from WT and sEH-KO mice, vessels that behaved identically in their responsiveness to vasoactive agents and vessel stretch. Hypoxic pulmonary vasoconstriction (HPV, expressed as increases in hypoxic force) was significantly greater in vessels of sEH-KO than WT vessels; the enhanced component was inhibited by EEZE. Treatment of WT vessels with 11,12-EET enhanced HPV to the same level as sEH-KO vessels, confirming EETs as primary players. Inhibition of cyclooxygenases (COXs) significantly enhanced HPV in WT vessels, but attenuated HPV in sEH-KO vessels. Blocking/inhibiting COX-1, prostaglandin H (PGH )/thromboxane A (TXA ) receptors and TXA synthase prevented the enhanced HPV in sEH-KO vessels but had no effects on WT vessels. In conclusion, an EET-dependent alteration in PG metabolism that favors the action of vasoconstrictor PGH and TXA potentiates HPV and hypoxia-induced elevation of RVSP in sEH-deficient mice.
doi_str_mv 10.1152/ajplung.00038.2017
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5582931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1952095018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-622d7899a7ffd4e20010187a2c4ba36cf9dee9d026daf93f1ba86785afce85ca3</originalsourceid><addsrcrecordid>eNpdUctOwzAQtBCIlscPcECRuHBJWTtxYl-QUFUeAokLnC3XcVpXiR3spIK_x4VSAZf1andmNOtB6AzDBGNKruSqawa7mABAxiYEcLmHxnFBUkwh34895JBCAXSEjkJYRRwFKA7RiLCcQixj9DibvYSk8651vU6WH517NyrphqZ1VvqPZC2DU86G3hvVG2eTtZHJbuD8hhp6aZ2pwgk6qGUT9On2PUavt7OX6X369Hz3ML15SlWeQZ8WhFQl41yWdV3lmgBgwKyUROVzmRWq5pXWvAJSVLLmWY3nkhUlo7JWmlEls2N0_a3bDfNWV0rb3stGdN600bJw0oi_G2uWYuHWglJGeIajwOVWwLu3QYdetCYo3TTSajcEgRnPaF4wSiP04h905QZv43kCc0qA0-g9osg3SsXfCF7XOzMYxCYrsc1KfGUlNllF0vnvM3aUn3CyT8i4lFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952095018</pqid></control><display><type>article</type><title>EETs promote hypoxic pulmonary vasoconstriction via constrictor prostanoids</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Kandhi, Sharath ; Zhang, Bin ; Froogh, Ghezal ; Qin, Jun ; Alruwaili, Norah ; Le, Yicong ; Yang, Yang-Ming ; Hwang, Sung Hee ; Hammock, Bruce D ; Wolin, Michael S ; Huang, An ; Sun, Dong</creator><creatorcontrib>Kandhi, Sharath ; Zhang, Bin ; Froogh, Ghezal ; Qin, Jun ; Alruwaili, Norah ; Le, Yicong ; Yang, Yang-Ming ; Hwang, Sung Hee ; Hammock, Bruce D ; Wolin, Michael S ; Huang, An ; Sun, Dong</creatorcontrib><description>To test the hypothesis that epoxyeicosatrienoic acids (EETs) facilitate pulmonary responses to hypoxia, male wild-type (WT) and soluble-epoxide hydrolase knockout (sEH-KO) mice, and WT mice chronically fed a sEH inhibitor ( -TUCB; 1 mg·kg ·day ) were used. Right ventricular systolic pressure (RVSP) was recorded under control and hypoxic conditions. The control RVSP was comparable among all groups. However, hypoxia elicited increases in RVSP in all groups with predominance in sEH-KO and -TUCB-treated mice. 14,15-EEZE (an EET antagonist) attenuated the hypoxia-induced greater elevation of RVSP in sEH-deficient mice, suggesting an EET-mediated increment. Exogenous 5,6-; 8,9-, or 14,15-EET (0.05 ng/g body wt) did not change RVSP in any conditions, but 11,12-EET enhanced RVSP under hypoxia. Isometric tension was recorded from pulmonary arteries isolated from WT and sEH-KO mice, vessels that behaved identically in their responsiveness to vasoactive agents and vessel stretch. Hypoxic pulmonary vasoconstriction (HPV, expressed as increases in hypoxic force) was significantly greater in vessels of sEH-KO than WT vessels; the enhanced component was inhibited by EEZE. Treatment of WT vessels with 11,12-EET enhanced HPV to the same level as sEH-KO vessels, confirming EETs as primary players. Inhibition of cyclooxygenases (COXs) significantly enhanced HPV in WT vessels, but attenuated HPV in sEH-KO vessels. Blocking/inhibiting COX-1, prostaglandin H (PGH )/thromboxane A (TXA ) receptors and TXA synthase prevented the enhanced HPV in sEH-KO vessels but had no effects on WT vessels. In conclusion, an EET-dependent alteration in PG metabolism that favors the action of vasoconstrictor PGH and TXA potentiates HPV and hypoxia-induced elevation of RVSP in sEH-deficient mice.</description><identifier>ISSN: 1040-0605</identifier><identifier>EISSN: 1522-1504</identifier><identifier>DOI: 10.1152/ajplung.00038.2017</identifier><identifier>PMID: 28450284</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>8,11,14-Eicosatrienoic Acid - analogs &amp; derivatives ; 8,11,14-Eicosatrienoic Acid - pharmacology ; Animals ; Arteries ; Blood pressure ; Blood Pressure - drug effects ; Blood vessels ; Cyclooxygenase-1 ; Epoxide hydrolase ; Epoxide Hydrolases - pharmacology ; Heart ; Hypothesis testing ; Hypoxia ; Hypoxia - chemically induced ; Hypoxia - metabolism ; Isometric ; Lungs ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecules ; Prostaglandin H2 ; Prostaglandins ; Prostaglandins - metabolism ; Pulmonary artery ; Pulmonary Artery - drug effects ; Pulmonary Artery - metabolism ; Receptors ; Rodents ; Staphylococcal enterotoxin H ; Systolic pressure ; Thromboxane A2 ; Vasoactive agents ; Vasoconstriction ; Vasoconstriction - drug effects ; Vasoconstrictor Agents - pharmacology ; Ventricle</subject><ispartof>American journal of physiology. Lung cellular and molecular physiology, 2017-08, Vol.313 (2), p.L350-L359</ispartof><rights>Copyright © 2017 the American Physiological Society.</rights><rights>Copyright American Physiological Society Aug 2017</rights><rights>Copyright © 2017 the American Physiological Society 2017 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-622d7899a7ffd4e20010187a2c4ba36cf9dee9d026daf93f1ba86785afce85ca3</citedby><cites>FETCH-LOGICAL-c430t-622d7899a7ffd4e20010187a2c4ba36cf9dee9d026daf93f1ba86785afce85ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,3026,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28450284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kandhi, Sharath</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Froogh, Ghezal</creatorcontrib><creatorcontrib>Qin, Jun</creatorcontrib><creatorcontrib>Alruwaili, Norah</creatorcontrib><creatorcontrib>Le, Yicong</creatorcontrib><creatorcontrib>Yang, Yang-Ming</creatorcontrib><creatorcontrib>Hwang, Sung Hee</creatorcontrib><creatorcontrib>Hammock, Bruce D</creatorcontrib><creatorcontrib>Wolin, Michael S</creatorcontrib><creatorcontrib>Huang, An</creatorcontrib><creatorcontrib>Sun, Dong</creatorcontrib><title>EETs promote hypoxic pulmonary vasoconstriction via constrictor prostanoids</title><title>American journal of physiology. Lung cellular and molecular physiology</title><addtitle>Am J Physiol Lung Cell Mol Physiol</addtitle><description>To test the hypothesis that epoxyeicosatrienoic acids (EETs) facilitate pulmonary responses to hypoxia, male wild-type (WT) and soluble-epoxide hydrolase knockout (sEH-KO) mice, and WT mice chronically fed a sEH inhibitor ( -TUCB; 1 mg·kg ·day ) were used. Right ventricular systolic pressure (RVSP) was recorded under control and hypoxic conditions. The control RVSP was comparable among all groups. However, hypoxia elicited increases in RVSP in all groups with predominance in sEH-KO and -TUCB-treated mice. 14,15-EEZE (an EET antagonist) attenuated the hypoxia-induced greater elevation of RVSP in sEH-deficient mice, suggesting an EET-mediated increment. Exogenous 5,6-; 8,9-, or 14,15-EET (0.05 ng/g body wt) did not change RVSP in any conditions, but 11,12-EET enhanced RVSP under hypoxia. Isometric tension was recorded from pulmonary arteries isolated from WT and sEH-KO mice, vessels that behaved identically in their responsiveness to vasoactive agents and vessel stretch. Hypoxic pulmonary vasoconstriction (HPV, expressed as increases in hypoxic force) was significantly greater in vessels of sEH-KO than WT vessels; the enhanced component was inhibited by EEZE. Treatment of WT vessels with 11,12-EET enhanced HPV to the same level as sEH-KO vessels, confirming EETs as primary players. Inhibition of cyclooxygenases (COXs) significantly enhanced HPV in WT vessels, but attenuated HPV in sEH-KO vessels. Blocking/inhibiting COX-1, prostaglandin H (PGH )/thromboxane A (TXA ) receptors and TXA synthase prevented the enhanced HPV in sEH-KO vessels but had no effects on WT vessels. In conclusion, an EET-dependent alteration in PG metabolism that favors the action of vasoconstrictor PGH and TXA potentiates HPV and hypoxia-induced elevation of RVSP in sEH-deficient mice.</description><subject>8,11,14-Eicosatrienoic Acid - analogs &amp; derivatives</subject><subject>8,11,14-Eicosatrienoic Acid - pharmacology</subject><subject>Animals</subject><subject>Arteries</subject><subject>Blood pressure</subject><subject>Blood Pressure - drug effects</subject><subject>Blood vessels</subject><subject>Cyclooxygenase-1</subject><subject>Epoxide hydrolase</subject><subject>Epoxide Hydrolases - pharmacology</subject><subject>Heart</subject><subject>Hypothesis testing</subject><subject>Hypoxia</subject><subject>Hypoxia - chemically induced</subject><subject>Hypoxia - metabolism</subject><subject>Isometric</subject><subject>Lungs</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Molecules</subject><subject>Prostaglandin H2</subject><subject>Prostaglandins</subject><subject>Prostaglandins - metabolism</subject><subject>Pulmonary artery</subject><subject>Pulmonary Artery - drug effects</subject><subject>Pulmonary Artery - metabolism</subject><subject>Receptors</subject><subject>Rodents</subject><subject>Staphylococcal enterotoxin H</subject><subject>Systolic pressure</subject><subject>Thromboxane A2</subject><subject>Vasoactive agents</subject><subject>Vasoconstriction</subject><subject>Vasoconstriction - drug effects</subject><subject>Vasoconstrictor Agents - pharmacology</subject><subject>Ventricle</subject><issn>1040-0605</issn><issn>1522-1504</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUctOwzAQtBCIlscPcECRuHBJWTtxYl-QUFUeAokLnC3XcVpXiR3spIK_x4VSAZf1andmNOtB6AzDBGNKruSqawa7mABAxiYEcLmHxnFBUkwh34895JBCAXSEjkJYRRwFKA7RiLCcQixj9DibvYSk8651vU6WH517NyrphqZ1VvqPZC2DU86G3hvVG2eTtZHJbuD8hhp6aZ2pwgk6qGUT9On2PUavt7OX6X369Hz3ML15SlWeQZ8WhFQl41yWdV3lmgBgwKyUROVzmRWq5pXWvAJSVLLmWY3nkhUlo7JWmlEls2N0_a3bDfNWV0rb3stGdN600bJw0oi_G2uWYuHWglJGeIajwOVWwLu3QYdetCYo3TTSajcEgRnPaF4wSiP04h905QZv43kCc0qA0-g9osg3SsXfCF7XOzMYxCYrsc1KfGUlNllF0vnvM3aUn3CyT8i4lFQ</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Kandhi, Sharath</creator><creator>Zhang, Bin</creator><creator>Froogh, Ghezal</creator><creator>Qin, Jun</creator><creator>Alruwaili, Norah</creator><creator>Le, Yicong</creator><creator>Yang, Yang-Ming</creator><creator>Hwang, Sung Hee</creator><creator>Hammock, Bruce D</creator><creator>Wolin, Michael S</creator><creator>Huang, An</creator><creator>Sun, Dong</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170801</creationdate><title>EETs promote hypoxic pulmonary vasoconstriction via constrictor prostanoids</title><author>Kandhi, Sharath ; Zhang, Bin ; Froogh, Ghezal ; Qin, Jun ; Alruwaili, Norah ; Le, Yicong ; Yang, Yang-Ming ; Hwang, Sung Hee ; Hammock, Bruce D ; Wolin, Michael S ; Huang, An ; Sun, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-622d7899a7ffd4e20010187a2c4ba36cf9dee9d026daf93f1ba86785afce85ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>8,11,14-Eicosatrienoic Acid - analogs &amp; derivatives</topic><topic>8,11,14-Eicosatrienoic Acid - pharmacology</topic><topic>Animals</topic><topic>Arteries</topic><topic>Blood pressure</topic><topic>Blood Pressure - drug effects</topic><topic>Blood vessels</topic><topic>Cyclooxygenase-1</topic><topic>Epoxide hydrolase</topic><topic>Epoxide Hydrolases - pharmacology</topic><topic>Heart</topic><topic>Hypothesis testing</topic><topic>Hypoxia</topic><topic>Hypoxia - chemically induced</topic><topic>Hypoxia - metabolism</topic><topic>Isometric</topic><topic>Lungs</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Molecules</topic><topic>Prostaglandin H2</topic><topic>Prostaglandins</topic><topic>Prostaglandins - metabolism</topic><topic>Pulmonary artery</topic><topic>Pulmonary Artery - drug effects</topic><topic>Pulmonary Artery - metabolism</topic><topic>Receptors</topic><topic>Rodents</topic><topic>Staphylococcal enterotoxin H</topic><topic>Systolic pressure</topic><topic>Thromboxane A2</topic><topic>Vasoactive agents</topic><topic>Vasoconstriction</topic><topic>Vasoconstriction - drug effects</topic><topic>Vasoconstrictor Agents - pharmacology</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kandhi, Sharath</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Froogh, Ghezal</creatorcontrib><creatorcontrib>Qin, Jun</creatorcontrib><creatorcontrib>Alruwaili, Norah</creatorcontrib><creatorcontrib>Le, Yicong</creatorcontrib><creatorcontrib>Yang, Yang-Ming</creatorcontrib><creatorcontrib>Hwang, Sung Hee</creatorcontrib><creatorcontrib>Hammock, Bruce D</creatorcontrib><creatorcontrib>Wolin, Michael S</creatorcontrib><creatorcontrib>Huang, An</creatorcontrib><creatorcontrib>Sun, Dong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of physiology. Lung cellular and molecular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kandhi, Sharath</au><au>Zhang, Bin</au><au>Froogh, Ghezal</au><au>Qin, Jun</au><au>Alruwaili, Norah</au><au>Le, Yicong</au><au>Yang, Yang-Ming</au><au>Hwang, Sung Hee</au><au>Hammock, Bruce D</au><au>Wolin, Michael S</au><au>Huang, An</au><au>Sun, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EETs promote hypoxic pulmonary vasoconstriction via constrictor prostanoids</atitle><jtitle>American journal of physiology. Lung cellular and molecular physiology</jtitle><addtitle>Am J Physiol Lung Cell Mol Physiol</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>313</volume><issue>2</issue><spage>L350</spage><epage>L359</epage><pages>L350-L359</pages><issn>1040-0605</issn><eissn>1522-1504</eissn><abstract>To test the hypothesis that epoxyeicosatrienoic acids (EETs) facilitate pulmonary responses to hypoxia, male wild-type (WT) and soluble-epoxide hydrolase knockout (sEH-KO) mice, and WT mice chronically fed a sEH inhibitor ( -TUCB; 1 mg·kg ·day ) were used. Right ventricular systolic pressure (RVSP) was recorded under control and hypoxic conditions. The control RVSP was comparable among all groups. However, hypoxia elicited increases in RVSP in all groups with predominance in sEH-KO and -TUCB-treated mice. 14,15-EEZE (an EET antagonist) attenuated the hypoxia-induced greater elevation of RVSP in sEH-deficient mice, suggesting an EET-mediated increment. Exogenous 5,6-; 8,9-, or 14,15-EET (0.05 ng/g body wt) did not change RVSP in any conditions, but 11,12-EET enhanced RVSP under hypoxia. Isometric tension was recorded from pulmonary arteries isolated from WT and sEH-KO mice, vessels that behaved identically in their responsiveness to vasoactive agents and vessel stretch. Hypoxic pulmonary vasoconstriction (HPV, expressed as increases in hypoxic force) was significantly greater in vessels of sEH-KO than WT vessels; the enhanced component was inhibited by EEZE. Treatment of WT vessels with 11,12-EET enhanced HPV to the same level as sEH-KO vessels, confirming EETs as primary players. Inhibition of cyclooxygenases (COXs) significantly enhanced HPV in WT vessels, but attenuated HPV in sEH-KO vessels. Blocking/inhibiting COX-1, prostaglandin H (PGH )/thromboxane A (TXA ) receptors and TXA synthase prevented the enhanced HPV in sEH-KO vessels but had no effects on WT vessels. In conclusion, an EET-dependent alteration in PG metabolism that favors the action of vasoconstrictor PGH and TXA potentiates HPV and hypoxia-induced elevation of RVSP in sEH-deficient mice.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>28450284</pmid><doi>10.1152/ajplung.00038.2017</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-0605
ispartof American journal of physiology. Lung cellular and molecular physiology, 2017-08, Vol.313 (2), p.L350-L359
issn 1040-0605
1522-1504
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5582931
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects 8,11,14-Eicosatrienoic Acid - analogs & derivatives
8,11,14-Eicosatrienoic Acid - pharmacology
Animals
Arteries
Blood pressure
Blood Pressure - drug effects
Blood vessels
Cyclooxygenase-1
Epoxide hydrolase
Epoxide Hydrolases - pharmacology
Heart
Hypothesis testing
Hypoxia
Hypoxia - chemically induced
Hypoxia - metabolism
Isometric
Lungs
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Molecules
Prostaglandin H2
Prostaglandins
Prostaglandins - metabolism
Pulmonary artery
Pulmonary Artery - drug effects
Pulmonary Artery - metabolism
Receptors
Rodents
Staphylococcal enterotoxin H
Systolic pressure
Thromboxane A2
Vasoactive agents
Vasoconstriction
Vasoconstriction - drug effects
Vasoconstrictor Agents - pharmacology
Ventricle
title EETs promote hypoxic pulmonary vasoconstriction via constrictor prostanoids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EETs%20promote%20hypoxic%20pulmonary%20vasoconstriction%20via%20constrictor%20prostanoids&rft.jtitle=American%20journal%20of%20physiology.%20Lung%20cellular%20and%20molecular%20physiology&rft.au=Kandhi,%20Sharath&rft.date=2017-08-01&rft.volume=313&rft.issue=2&rft.spage=L350&rft.epage=L359&rft.pages=L350-L359&rft.issn=1040-0605&rft.eissn=1522-1504&rft_id=info:doi/10.1152/ajplung.00038.2017&rft_dat=%3Cproquest_pubme%3E1952095018%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952095018&rft_id=info:pmid/28450284&rfr_iscdi=true