The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner

Kinesin motors play central roles in establishing and maintaining the mitotic spindle during cell division. Unlike most other kinesins, Cin8, a kinesin-5 motor in Saccharomyces cerevisiae, can move bidirectionally along microtubules, switching directionality according to biochemical conditions, a be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2017-09, Vol.292 (35), p.14680-14694
Hauptverfasser: Bell, Kayla M., Cha, Hyo Keun, Sindelar, Charles V., Cochran, Jared C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14694
container_issue 35
container_start_page 14680
container_title The Journal of biological chemistry
container_volume 292
creator Bell, Kayla M.
Cha, Hyo Keun
Sindelar, Charles V.
Cochran, Jared C.
description Kinesin motors play central roles in establishing and maintaining the mitotic spindle during cell division. Unlike most other kinesins, Cin8, a kinesin-5 motor in Saccharomyces cerevisiae, can move bidirectionally along microtubules, switching directionality according to biochemical conditions, a behavior that remains largely unexplained. To this end, we used biochemical rate and equilibrium constant measurements as well as cryo-electron microscopy methodologies to investigate the microtubule interactions of the Cin8 motor domain. These experiments unexpectedly revealed that, whereas Cin8 ATPase kinetics fell within measured ranges for kinesins (especially kinesin-5 proteins), approximately four motors can bind each αβ-tubulin dimer within the microtubule lattice. This result contrasted with those observations on other known kinesins, which can bind only a single “canonical” site per tubulin dimer. Competition assays with human kinesin-5 (Eg5) only partially abrogated this behavior, indicating that Cin8 binds microtubules not only at the canonical site, but also one or more separate (“noncanonical”) sites. Moreover, we found that deleting the large, class-specific insert in the microtubule-binding loop 8 reverts Cin8 to one motor per αβ-tubulin in the microtubule. The novel microtubule-binding mode of Cin8 identified here provides a potential explanation for Cin8 clustering along microtubules and potentially may contribute to the mechanism for direction reversal.
doi_str_mv 10.1074/jbc.M117.797662
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5582858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820342046</els_id><sourcerecordid>28701465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-62d09215ace692467d458e205db5467246c8373437995cc3da4d1adb2296fb173</originalsourceid><addsrcrecordid>eNp1kE9PAyEQxYnRaK2evRm-wFZglwUuJqbxX6LRgybeCAtTi7ZsA7Sm316aqtGDHCDDvPcm80PohJIRJaI5e-vs6J5SMRJKtC3bQQNKZF3VnL7sogEhjFaKcXmADlN6I-U0iu6jAyYFoU3LB-jxaQp4DSZl_O4DJB8qjsc-SOxDhmhsTvjD5ynORTf3NvZ52S1nUNrY4NAHa8rlrZnhuQkB4hHam5hZguOvd4iery6fxjfV3cP17fjirrKNVLlqmSOKUW4stIo1rXANl8AIdx0vVfmxshZ1UwuluLW1M42jxnWMqXbSUVEP0fk2d7Hs5uAshBzNTC-in5u41r3x-m8n-Kl-7Veac8kklyXgbBtQdkopwuTHS4newNUFrt7A1Vu4xXH6e-SP_ptmEaitAMriKw9RJ-shWHA-gs3a9f7f8E-NQImm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Bell, Kayla M. ; Cha, Hyo Keun ; Sindelar, Charles V. ; Cochran, Jared C.</creator><creatorcontrib>Bell, Kayla M. ; Cha, Hyo Keun ; Sindelar, Charles V. ; Cochran, Jared C.</creatorcontrib><description>Kinesin motors play central roles in establishing and maintaining the mitotic spindle during cell division. Unlike most other kinesins, Cin8, a kinesin-5 motor in Saccharomyces cerevisiae, can move bidirectionally along microtubules, switching directionality according to biochemical conditions, a behavior that remains largely unexplained. To this end, we used biochemical rate and equilibrium constant measurements as well as cryo-electron microscopy methodologies to investigate the microtubule interactions of the Cin8 motor domain. These experiments unexpectedly revealed that, whereas Cin8 ATPase kinetics fell within measured ranges for kinesins (especially kinesin-5 proteins), approximately four motors can bind each αβ-tubulin dimer within the microtubule lattice. This result contrasted with those observations on other known kinesins, which can bind only a single “canonical” site per tubulin dimer. Competition assays with human kinesin-5 (Eg5) only partially abrogated this behavior, indicating that Cin8 binds microtubules not only at the canonical site, but also one or more separate (“noncanonical”) sites. Moreover, we found that deleting the large, class-specific insert in the microtubule-binding loop 8 reverts Cin8 to one motor per αβ-tubulin in the microtubule. The novel microtubule-binding mode of Cin8 identified here provides a potential explanation for Cin8 clustering along microtubules and potentially may contribute to the mechanism for direction reversal.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M117.797662</identifier><identifier>PMID: 28701465</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Diphosphate - chemistry ; Adenosine Diphosphate - metabolism ; Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - metabolism ; Adenylyl Imidodiphosphate - chemistry ; Adenylyl Imidodiphosphate - metabolism ; Amino Acid Substitution ; ATPase ; Binding Sites ; Binding, Competitive ; Biocatalysis ; cryo-electron microscopy ; Cryoelectron Microscopy ; Crystallography, X-Ray ; enzyme mechanism ; Gene Deletion ; Humans ; kinesin ; Kinesin - chemistry ; Kinesin - genetics ; Kinesin - metabolism ; kinetics ; microtubule ; Microtubules - chemistry ; Microtubules - enzymology ; Microtubules - metabolism ; Models, Molecular ; Molecular Biophysics ; molecular motor ; Mutation ; Peptide Fragments - chemistry ; Peptide Fragments - genetics ; Peptide Fragments - metabolism ; Protein Conformation ; Protein Interaction Domains and Motifs ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; thermodynamics ; Tubulin - chemistry ; Tubulin - metabolism</subject><ispartof>The Journal of biological chemistry, 2017-09, Vol.292 (35), p.14680-14694</ispartof><rights>2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-62d09215ace692467d458e205db5467246c8373437995cc3da4d1adb2296fb173</citedby><cites>FETCH-LOGICAL-c489t-62d09215ace692467d458e205db5467246c8373437995cc3da4d1adb2296fb173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582858/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582858/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28701465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bell, Kayla M.</creatorcontrib><creatorcontrib>Cha, Hyo Keun</creatorcontrib><creatorcontrib>Sindelar, Charles V.</creatorcontrib><creatorcontrib>Cochran, Jared C.</creatorcontrib><title>The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Kinesin motors play central roles in establishing and maintaining the mitotic spindle during cell division. Unlike most other kinesins, Cin8, a kinesin-5 motor in Saccharomyces cerevisiae, can move bidirectionally along microtubules, switching directionality according to biochemical conditions, a behavior that remains largely unexplained. To this end, we used biochemical rate and equilibrium constant measurements as well as cryo-electron microscopy methodologies to investigate the microtubule interactions of the Cin8 motor domain. These experiments unexpectedly revealed that, whereas Cin8 ATPase kinetics fell within measured ranges for kinesins (especially kinesin-5 proteins), approximately four motors can bind each αβ-tubulin dimer within the microtubule lattice. This result contrasted with those observations on other known kinesins, which can bind only a single “canonical” site per tubulin dimer. Competition assays with human kinesin-5 (Eg5) only partially abrogated this behavior, indicating that Cin8 binds microtubules not only at the canonical site, but also one or more separate (“noncanonical”) sites. Moreover, we found that deleting the large, class-specific insert in the microtubule-binding loop 8 reverts Cin8 to one motor per αβ-tubulin in the microtubule. The novel microtubule-binding mode of Cin8 identified here provides a potential explanation for Cin8 clustering along microtubules and potentially may contribute to the mechanism for direction reversal.</description><subject>Adenosine Diphosphate - chemistry</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Adenylyl Imidodiphosphate - chemistry</subject><subject>Adenylyl Imidodiphosphate - metabolism</subject><subject>Amino Acid Substitution</subject><subject>ATPase</subject><subject>Binding Sites</subject><subject>Binding, Competitive</subject><subject>Biocatalysis</subject><subject>cryo-electron microscopy</subject><subject>Cryoelectron Microscopy</subject><subject>Crystallography, X-Ray</subject><subject>enzyme mechanism</subject><subject>Gene Deletion</subject><subject>Humans</subject><subject>kinesin</subject><subject>Kinesin - chemistry</subject><subject>Kinesin - genetics</subject><subject>Kinesin - metabolism</subject><subject>kinetics</subject><subject>microtubule</subject><subject>Microtubules - chemistry</subject><subject>Microtubules - enzymology</subject><subject>Microtubules - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Biophysics</subject><subject>molecular motor</subject><subject>Mutation</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - genetics</subject><subject>Peptide Fragments - metabolism</subject><subject>Protein Conformation</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>thermodynamics</subject><subject>Tubulin - chemistry</subject><subject>Tubulin - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE9PAyEQxYnRaK2evRm-wFZglwUuJqbxX6LRgybeCAtTi7ZsA7Sm316aqtGDHCDDvPcm80PohJIRJaI5e-vs6J5SMRJKtC3bQQNKZF3VnL7sogEhjFaKcXmADlN6I-U0iu6jAyYFoU3LB-jxaQp4DSZl_O4DJB8qjsc-SOxDhmhsTvjD5ynORTf3NvZ52S1nUNrY4NAHa8rlrZnhuQkB4hHam5hZguOvd4iery6fxjfV3cP17fjirrKNVLlqmSOKUW4stIo1rXANl8AIdx0vVfmxshZ1UwuluLW1M42jxnWMqXbSUVEP0fk2d7Hs5uAshBzNTC-in5u41r3x-m8n-Kl-7Veac8kklyXgbBtQdkopwuTHS4newNUFrt7A1Vu4xXH6e-SP_ptmEaitAMriKw9RJ-shWHA-gs3a9f7f8E-NQImm</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Bell, Kayla M.</creator><creator>Cha, Hyo Keun</creator><creator>Sindelar, Charles V.</creator><creator>Cochran, Jared C.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20170901</creationdate><title>The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner</title><author>Bell, Kayla M. ; Cha, Hyo Keun ; Sindelar, Charles V. ; Cochran, Jared C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-62d09215ace692467d458e205db5467246c8373437995cc3da4d1adb2296fb173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenosine Diphosphate - chemistry</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Adenylyl Imidodiphosphate - chemistry</topic><topic>Adenylyl Imidodiphosphate - metabolism</topic><topic>Amino Acid Substitution</topic><topic>ATPase</topic><topic>Binding Sites</topic><topic>Binding, Competitive</topic><topic>Biocatalysis</topic><topic>cryo-electron microscopy</topic><topic>Cryoelectron Microscopy</topic><topic>Crystallography, X-Ray</topic><topic>enzyme mechanism</topic><topic>Gene Deletion</topic><topic>Humans</topic><topic>kinesin</topic><topic>Kinesin - chemistry</topic><topic>Kinesin - genetics</topic><topic>Kinesin - metabolism</topic><topic>kinetics</topic><topic>microtubule</topic><topic>Microtubules - chemistry</topic><topic>Microtubules - enzymology</topic><topic>Microtubules - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Biophysics</topic><topic>molecular motor</topic><topic>Mutation</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - genetics</topic><topic>Peptide Fragments - metabolism</topic><topic>Protein Conformation</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>thermodynamics</topic><topic>Tubulin - chemistry</topic><topic>Tubulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bell, Kayla M.</creatorcontrib><creatorcontrib>Cha, Hyo Keun</creatorcontrib><creatorcontrib>Sindelar, Charles V.</creatorcontrib><creatorcontrib>Cochran, Jared C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bell, Kayla M.</au><au>Cha, Hyo Keun</au><au>Sindelar, Charles V.</au><au>Cochran, Jared C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>292</volume><issue>35</issue><spage>14680</spage><epage>14694</epage><pages>14680-14694</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Kinesin motors play central roles in establishing and maintaining the mitotic spindle during cell division. Unlike most other kinesins, Cin8, a kinesin-5 motor in Saccharomyces cerevisiae, can move bidirectionally along microtubules, switching directionality according to biochemical conditions, a behavior that remains largely unexplained. To this end, we used biochemical rate and equilibrium constant measurements as well as cryo-electron microscopy methodologies to investigate the microtubule interactions of the Cin8 motor domain. These experiments unexpectedly revealed that, whereas Cin8 ATPase kinetics fell within measured ranges for kinesins (especially kinesin-5 proteins), approximately four motors can bind each αβ-tubulin dimer within the microtubule lattice. This result contrasted with those observations on other known kinesins, which can bind only a single “canonical” site per tubulin dimer. Competition assays with human kinesin-5 (Eg5) only partially abrogated this behavior, indicating that Cin8 binds microtubules not only at the canonical site, but also one or more separate (“noncanonical”) sites. Moreover, we found that deleting the large, class-specific insert in the microtubule-binding loop 8 reverts Cin8 to one motor per αβ-tubulin in the microtubule. The novel microtubule-binding mode of Cin8 identified here provides a potential explanation for Cin8 clustering along microtubules and potentially may contribute to the mechanism for direction reversal.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28701465</pmid><doi>10.1074/jbc.M117.797662</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2017-09, Vol.292 (35), p.14680-14694
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5582858
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Adenosine Diphosphate - chemistry
Adenosine Diphosphate - metabolism
Adenosine Triphosphate - chemistry
Adenosine Triphosphate - metabolism
Adenylyl Imidodiphosphate - chemistry
Adenylyl Imidodiphosphate - metabolism
Amino Acid Substitution
ATPase
Binding Sites
Binding, Competitive
Biocatalysis
cryo-electron microscopy
Cryoelectron Microscopy
Crystallography, X-Ray
enzyme mechanism
Gene Deletion
Humans
kinesin
Kinesin - chemistry
Kinesin - genetics
Kinesin - metabolism
kinetics
microtubule
Microtubules - chemistry
Microtubules - enzymology
Microtubules - metabolism
Models, Molecular
Molecular Biophysics
molecular motor
Mutation
Peptide Fragments - chemistry
Peptide Fragments - genetics
Peptide Fragments - metabolism
Protein Conformation
Protein Interaction Domains and Motifs
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
thermodynamics
Tubulin - chemistry
Tubulin - metabolism
title The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20yeast%20kinesin-5%20Cin8%20interacts%20with%20the%20microtubule%20in%20a%20noncanonical%20manner&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bell,%20Kayla%20M.&rft.date=2017-09-01&rft.volume=292&rft.issue=35&rft.spage=14680&rft.epage=14694&rft.pages=14680-14694&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M117.797662&rft_dat=%3Cpubmed_cross%3E28701465%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28701465&rft_els_id=S0021925820342046&rfr_iscdi=true