The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner
Kinesin motors play central roles in establishing and maintaining the mitotic spindle during cell division. Unlike most other kinesins, Cin8, a kinesin-5 motor in Saccharomyces cerevisiae, can move bidirectionally along microtubules, switching directionality according to biochemical conditions, a be...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2017-09, Vol.292 (35), p.14680-14694 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14694 |
---|---|
container_issue | 35 |
container_start_page | 14680 |
container_title | The Journal of biological chemistry |
container_volume | 292 |
creator | Bell, Kayla M. Cha, Hyo Keun Sindelar, Charles V. Cochran, Jared C. |
description | Kinesin motors play central roles in establishing and maintaining the mitotic spindle during cell division. Unlike most other kinesins, Cin8, a kinesin-5 motor in Saccharomyces cerevisiae, can move bidirectionally along microtubules, switching directionality according to biochemical conditions, a behavior that remains largely unexplained. To this end, we used biochemical rate and equilibrium constant measurements as well as cryo-electron microscopy methodologies to investigate the microtubule interactions of the Cin8 motor domain. These experiments unexpectedly revealed that, whereas Cin8 ATPase kinetics fell within measured ranges for kinesins (especially kinesin-5 proteins), approximately four motors can bind each αβ-tubulin dimer within the microtubule lattice. This result contrasted with those observations on other known kinesins, which can bind only a single “canonical” site per tubulin dimer. Competition assays with human kinesin-5 (Eg5) only partially abrogated this behavior, indicating that Cin8 binds microtubules not only at the canonical site, but also one or more separate (“noncanonical”) sites. Moreover, we found that deleting the large, class-specific insert in the microtubule-binding loop 8 reverts Cin8 to one motor per αβ-tubulin in the microtubule. The novel microtubule-binding mode of Cin8 identified here provides a potential explanation for Cin8 clustering along microtubules and potentially may contribute to the mechanism for direction reversal. |
doi_str_mv | 10.1074/jbc.M117.797662 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5582858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820342046</els_id><sourcerecordid>28701465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-62d09215ace692467d458e205db5467246c8373437995cc3da4d1adb2296fb173</originalsourceid><addsrcrecordid>eNp1kE9PAyEQxYnRaK2evRm-wFZglwUuJqbxX6LRgybeCAtTi7ZsA7Sm316aqtGDHCDDvPcm80PohJIRJaI5e-vs6J5SMRJKtC3bQQNKZF3VnL7sogEhjFaKcXmADlN6I-U0iu6jAyYFoU3LB-jxaQp4DSZl_O4DJB8qjsc-SOxDhmhsTvjD5ynORTf3NvZ52S1nUNrY4NAHa8rlrZnhuQkB4hHam5hZguOvd4iery6fxjfV3cP17fjirrKNVLlqmSOKUW4stIo1rXANl8AIdx0vVfmxshZ1UwuluLW1M42jxnWMqXbSUVEP0fk2d7Hs5uAshBzNTC-in5u41r3x-m8n-Kl-7Veac8kklyXgbBtQdkopwuTHS4newNUFrt7A1Vu4xXH6e-SP_ptmEaitAMriKw9RJ-shWHA-gs3a9f7f8E-NQImm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Bell, Kayla M. ; Cha, Hyo Keun ; Sindelar, Charles V. ; Cochran, Jared C.</creator><creatorcontrib>Bell, Kayla M. ; Cha, Hyo Keun ; Sindelar, Charles V. ; Cochran, Jared C.</creatorcontrib><description>Kinesin motors play central roles in establishing and maintaining the mitotic spindle during cell division. Unlike most other kinesins, Cin8, a kinesin-5 motor in Saccharomyces cerevisiae, can move bidirectionally along microtubules, switching directionality according to biochemical conditions, a behavior that remains largely unexplained. To this end, we used biochemical rate and equilibrium constant measurements as well as cryo-electron microscopy methodologies to investigate the microtubule interactions of the Cin8 motor domain. These experiments unexpectedly revealed that, whereas Cin8 ATPase kinetics fell within measured ranges for kinesins (especially kinesin-5 proteins), approximately four motors can bind each αβ-tubulin dimer within the microtubule lattice. This result contrasted with those observations on other known kinesins, which can bind only a single “canonical” site per tubulin dimer. Competition assays with human kinesin-5 (Eg5) only partially abrogated this behavior, indicating that Cin8 binds microtubules not only at the canonical site, but also one or more separate (“noncanonical”) sites. Moreover, we found that deleting the large, class-specific insert in the microtubule-binding loop 8 reverts Cin8 to one motor per αβ-tubulin in the microtubule. The novel microtubule-binding mode of Cin8 identified here provides a potential explanation for Cin8 clustering along microtubules and potentially may contribute to the mechanism for direction reversal.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M117.797662</identifier><identifier>PMID: 28701465</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Diphosphate - chemistry ; Adenosine Diphosphate - metabolism ; Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - metabolism ; Adenylyl Imidodiphosphate - chemistry ; Adenylyl Imidodiphosphate - metabolism ; Amino Acid Substitution ; ATPase ; Binding Sites ; Binding, Competitive ; Biocatalysis ; cryo-electron microscopy ; Cryoelectron Microscopy ; Crystallography, X-Ray ; enzyme mechanism ; Gene Deletion ; Humans ; kinesin ; Kinesin - chemistry ; Kinesin - genetics ; Kinesin - metabolism ; kinetics ; microtubule ; Microtubules - chemistry ; Microtubules - enzymology ; Microtubules - metabolism ; Models, Molecular ; Molecular Biophysics ; molecular motor ; Mutation ; Peptide Fragments - chemistry ; Peptide Fragments - genetics ; Peptide Fragments - metabolism ; Protein Conformation ; Protein Interaction Domains and Motifs ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; thermodynamics ; Tubulin - chemistry ; Tubulin - metabolism</subject><ispartof>The Journal of biological chemistry, 2017-09, Vol.292 (35), p.14680-14694</ispartof><rights>2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-62d09215ace692467d458e205db5467246c8373437995cc3da4d1adb2296fb173</citedby><cites>FETCH-LOGICAL-c489t-62d09215ace692467d458e205db5467246c8373437995cc3da4d1adb2296fb173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582858/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582858/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28701465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bell, Kayla M.</creatorcontrib><creatorcontrib>Cha, Hyo Keun</creatorcontrib><creatorcontrib>Sindelar, Charles V.</creatorcontrib><creatorcontrib>Cochran, Jared C.</creatorcontrib><title>The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Kinesin motors play central roles in establishing and maintaining the mitotic spindle during cell division. Unlike most other kinesins, Cin8, a kinesin-5 motor in Saccharomyces cerevisiae, can move bidirectionally along microtubules, switching directionality according to biochemical conditions, a behavior that remains largely unexplained. To this end, we used biochemical rate and equilibrium constant measurements as well as cryo-electron microscopy methodologies to investigate the microtubule interactions of the Cin8 motor domain. These experiments unexpectedly revealed that, whereas Cin8 ATPase kinetics fell within measured ranges for kinesins (especially kinesin-5 proteins), approximately four motors can bind each αβ-tubulin dimer within the microtubule lattice. This result contrasted with those observations on other known kinesins, which can bind only a single “canonical” site per tubulin dimer. Competition assays with human kinesin-5 (Eg5) only partially abrogated this behavior, indicating that Cin8 binds microtubules not only at the canonical site, but also one or more separate (“noncanonical”) sites. Moreover, we found that deleting the large, class-specific insert in the microtubule-binding loop 8 reverts Cin8 to one motor per αβ-tubulin in the microtubule. The novel microtubule-binding mode of Cin8 identified here provides a potential explanation for Cin8 clustering along microtubules and potentially may contribute to the mechanism for direction reversal.</description><subject>Adenosine Diphosphate - chemistry</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Adenylyl Imidodiphosphate - chemistry</subject><subject>Adenylyl Imidodiphosphate - metabolism</subject><subject>Amino Acid Substitution</subject><subject>ATPase</subject><subject>Binding Sites</subject><subject>Binding, Competitive</subject><subject>Biocatalysis</subject><subject>cryo-electron microscopy</subject><subject>Cryoelectron Microscopy</subject><subject>Crystallography, X-Ray</subject><subject>enzyme mechanism</subject><subject>Gene Deletion</subject><subject>Humans</subject><subject>kinesin</subject><subject>Kinesin - chemistry</subject><subject>Kinesin - genetics</subject><subject>Kinesin - metabolism</subject><subject>kinetics</subject><subject>microtubule</subject><subject>Microtubules - chemistry</subject><subject>Microtubules - enzymology</subject><subject>Microtubules - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Biophysics</subject><subject>molecular motor</subject><subject>Mutation</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - genetics</subject><subject>Peptide Fragments - metabolism</subject><subject>Protein Conformation</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>thermodynamics</subject><subject>Tubulin - chemistry</subject><subject>Tubulin - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE9PAyEQxYnRaK2evRm-wFZglwUuJqbxX6LRgybeCAtTi7ZsA7Sm316aqtGDHCDDvPcm80PohJIRJaI5e-vs6J5SMRJKtC3bQQNKZF3VnL7sogEhjFaKcXmADlN6I-U0iu6jAyYFoU3LB-jxaQp4DSZl_O4DJB8qjsc-SOxDhmhsTvjD5ynORTf3NvZ52S1nUNrY4NAHa8rlrZnhuQkB4hHam5hZguOvd4iery6fxjfV3cP17fjirrKNVLlqmSOKUW4stIo1rXANl8AIdx0vVfmxshZ1UwuluLW1M42jxnWMqXbSUVEP0fk2d7Hs5uAshBzNTC-in5u41r3x-m8n-Kl-7Veac8kklyXgbBtQdkopwuTHS4newNUFrt7A1Vu4xXH6e-SP_ptmEaitAMriKw9RJ-shWHA-gs3a9f7f8E-NQImm</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Bell, Kayla M.</creator><creator>Cha, Hyo Keun</creator><creator>Sindelar, Charles V.</creator><creator>Cochran, Jared C.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20170901</creationdate><title>The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner</title><author>Bell, Kayla M. ; Cha, Hyo Keun ; Sindelar, Charles V. ; Cochran, Jared C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-62d09215ace692467d458e205db5467246c8373437995cc3da4d1adb2296fb173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenosine Diphosphate - chemistry</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Adenylyl Imidodiphosphate - chemistry</topic><topic>Adenylyl Imidodiphosphate - metabolism</topic><topic>Amino Acid Substitution</topic><topic>ATPase</topic><topic>Binding Sites</topic><topic>Binding, Competitive</topic><topic>Biocatalysis</topic><topic>cryo-electron microscopy</topic><topic>Cryoelectron Microscopy</topic><topic>Crystallography, X-Ray</topic><topic>enzyme mechanism</topic><topic>Gene Deletion</topic><topic>Humans</topic><topic>kinesin</topic><topic>Kinesin - chemistry</topic><topic>Kinesin - genetics</topic><topic>Kinesin - metabolism</topic><topic>kinetics</topic><topic>microtubule</topic><topic>Microtubules - chemistry</topic><topic>Microtubules - enzymology</topic><topic>Microtubules - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Biophysics</topic><topic>molecular motor</topic><topic>Mutation</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - genetics</topic><topic>Peptide Fragments - metabolism</topic><topic>Protein Conformation</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>thermodynamics</topic><topic>Tubulin - chemistry</topic><topic>Tubulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bell, Kayla M.</creatorcontrib><creatorcontrib>Cha, Hyo Keun</creatorcontrib><creatorcontrib>Sindelar, Charles V.</creatorcontrib><creatorcontrib>Cochran, Jared C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bell, Kayla M.</au><au>Cha, Hyo Keun</au><au>Sindelar, Charles V.</au><au>Cochran, Jared C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>292</volume><issue>35</issue><spage>14680</spage><epage>14694</epage><pages>14680-14694</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Kinesin motors play central roles in establishing and maintaining the mitotic spindle during cell division. Unlike most other kinesins, Cin8, a kinesin-5 motor in Saccharomyces cerevisiae, can move bidirectionally along microtubules, switching directionality according to biochemical conditions, a behavior that remains largely unexplained. To this end, we used biochemical rate and equilibrium constant measurements as well as cryo-electron microscopy methodologies to investigate the microtubule interactions of the Cin8 motor domain. These experiments unexpectedly revealed that, whereas Cin8 ATPase kinetics fell within measured ranges for kinesins (especially kinesin-5 proteins), approximately four motors can bind each αβ-tubulin dimer within the microtubule lattice. This result contrasted with those observations on other known kinesins, which can bind only a single “canonical” site per tubulin dimer. Competition assays with human kinesin-5 (Eg5) only partially abrogated this behavior, indicating that Cin8 binds microtubules not only at the canonical site, but also one or more separate (“noncanonical”) sites. Moreover, we found that deleting the large, class-specific insert in the microtubule-binding loop 8 reverts Cin8 to one motor per αβ-tubulin in the microtubule. The novel microtubule-binding mode of Cin8 identified here provides a potential explanation for Cin8 clustering along microtubules and potentially may contribute to the mechanism for direction reversal.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28701465</pmid><doi>10.1074/jbc.M117.797662</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2017-09, Vol.292 (35), p.14680-14694 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5582858 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adenosine Diphosphate - chemistry Adenosine Diphosphate - metabolism Adenosine Triphosphate - chemistry Adenosine Triphosphate - metabolism Adenylyl Imidodiphosphate - chemistry Adenylyl Imidodiphosphate - metabolism Amino Acid Substitution ATPase Binding Sites Binding, Competitive Biocatalysis cryo-electron microscopy Cryoelectron Microscopy Crystallography, X-Ray enzyme mechanism Gene Deletion Humans kinesin Kinesin - chemistry Kinesin - genetics Kinesin - metabolism kinetics microtubule Microtubules - chemistry Microtubules - enzymology Microtubules - metabolism Models, Molecular Molecular Biophysics molecular motor Mutation Peptide Fragments - chemistry Peptide Fragments - genetics Peptide Fragments - metabolism Protein Conformation Protein Interaction Domains and Motifs Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism thermodynamics Tubulin - chemistry Tubulin - metabolism |
title | The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20yeast%20kinesin-5%20Cin8%20interacts%20with%20the%20microtubule%20in%20a%20noncanonical%20manner&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bell,%20Kayla%20M.&rft.date=2017-09-01&rft.volume=292&rft.issue=35&rft.spage=14680&rft.epage=14694&rft.pages=14680-14694&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M117.797662&rft_dat=%3Cpubmed_cross%3E28701465%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28701465&rft_els_id=S0021925820342046&rfr_iscdi=true |