Modulation of DNA base excision repair during neuronal differentiation

Abstract Neurons are terminally differentiated cells with a high rate of metabolism and multiple biological properties distinct from their undifferentiated precursors. Previous studies showed that nucleotide excision DNA repair is downregulated in postmitotic muscle cells and neurons. Here, we chara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurobiology of aging 2013-07, Vol.34 (7), p.1717-1727
Hauptverfasser: Sykora, Peter, Yang, Jenq-Lin, Ferrarelli, Leslie K, Tian, Jingyan, Tadokoro, Takashi, Kulkarni, Avanti, Weissman, Lior, Keijzers, Guido, Wilson, David M, Mattson, Mark P, Bohr, Vilhelm A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1727
container_issue 7
container_start_page 1717
container_title Neurobiology of aging
container_volume 34
creator Sykora, Peter
Yang, Jenq-Lin
Ferrarelli, Leslie K
Tian, Jingyan
Tadokoro, Takashi
Kulkarni, Avanti
Weissman, Lior
Keijzers, Guido
Wilson, David M
Mattson, Mark P
Bohr, Vilhelm A
description Abstract Neurons are terminally differentiated cells with a high rate of metabolism and multiple biological properties distinct from their undifferentiated precursors. Previous studies showed that nucleotide excision DNA repair is downregulated in postmitotic muscle cells and neurons. Here, we characterize DNA damage susceptibility and base excision DNA repair (BER) capacity in undifferentiated and differentiated human neural cells. The results show that undifferentiated human SH-SY5Y neuroblastoma cells are less sensitive to oxidative damage than their differentiated counterparts, in part because they have robust BER capacity, which is heavily attenuated in postmitotic neurons. The reduction in BER activity in differentiated cells correlates with diminished protein levels of key long patch BER components, flap endonuclease-1, proliferating cell nuclear antigen, and ligase I. Thus, because of their higher BER capacity, proliferative neural progenitor cells are more efficient at repairing DNA damage compared with their neuronally differentiated progeny.
doi_str_mv 10.1016/j.neurobiolaging.2012.12.016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5576894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0197458012006471</els_id><sourcerecordid>1348491088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c682t-3bff01cb3bace9a7831ddbd3d745d058ef405586fceb540d4293fe4ef39635873</originalsourceid><addsrcrecordid>eNqNUk1v1DAQtRAVXQp_AeXAgUu2dmzHjoQqVS0LlVo4AGfLsceLF2-82ElF_z1Ot61aLiCNZMnz3puPNwi9JXhJMGmPN8sBphR7H4Ne-2G9bDBpliVK8hlaEM5lTVgnnqMFJp2oGZf4EL3MeYMxFky0L9BhQ6ngLWcLtLqKdgp69HGooqvOP59Wvc5QwW_j8_yZYKd9quyUSq3qtvSgQ2W9c5BgGP0t9xU6cDpkeH33HqHvqw_fzj7Vl18-XpydXtamlc1Y0945TExPe22g00JSYm1vqRWMW8wlOIZL_60z0HOGLWs66oCBo11LuRT0CJ3sdXdTvwVrSgNJB7VLfqvTjYraq6eZwf9Q63itOBet7FgReHcnkOKvCfKotj4bCEEPEKesCG8wFVLI5t9QyiTrCJayQN_voSbFnBO4h44IVrNraqOeuqZm11SJkiz0N4-neiDf21QAqz0Aym6vPSSVjYfBgPUJzKhs9P9b6eQvIRP84I0OP-EG8iZOqbhbZlO5ENTX-YLmAyINxi0ThP4BYk_IIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348491088</pqid></control><display><type>article</type><title>Modulation of DNA base excision repair during neuronal differentiation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sykora, Peter ; Yang, Jenq-Lin ; Ferrarelli, Leslie K ; Tian, Jingyan ; Tadokoro, Takashi ; Kulkarni, Avanti ; Weissman, Lior ; Keijzers, Guido ; Wilson, David M ; Mattson, Mark P ; Bohr, Vilhelm A</creator><creatorcontrib>Sykora, Peter ; Yang, Jenq-Lin ; Ferrarelli, Leslie K ; Tian, Jingyan ; Tadokoro, Takashi ; Kulkarni, Avanti ; Weissman, Lior ; Keijzers, Guido ; Wilson, David M ; Mattson, Mark P ; Bohr, Vilhelm A</creatorcontrib><description>Abstract Neurons are terminally differentiated cells with a high rate of metabolism and multiple biological properties distinct from their undifferentiated precursors. Previous studies showed that nucleotide excision DNA repair is downregulated in postmitotic muscle cells and neurons. Here, we characterize DNA damage susceptibility and base excision DNA repair (BER) capacity in undifferentiated and differentiated human neural cells. The results show that undifferentiated human SH-SY5Y neuroblastoma cells are less sensitive to oxidative damage than their differentiated counterparts, in part because they have robust BER capacity, which is heavily attenuated in postmitotic neurons. The reduction in BER activity in differentiated cells correlates with diminished protein levels of key long patch BER components, flap endonuclease-1, proliferating cell nuclear antigen, and ligase I. Thus, because of their higher BER capacity, proliferative neural progenitor cells are more efficient at repairing DNA damage compared with their neuronally differentiated progeny.</description><identifier>ISSN: 0197-4580</identifier><identifier>EISSN: 1558-1497</identifier><identifier>DOI: 10.1016/j.neurobiolaging.2012.12.016</identifier><identifier>PMID: 23375654</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aging ; BER ; Cell Differentiation - drug effects ; Cell Differentiation - physiology ; Cell Line, Tumor ; Differentiation ; DNA - metabolism ; DNA - physiology ; DNA damage ; DNA Damage - drug effects ; DNA Damage - physiology ; DNA repair ; DNA Repair - drug effects ; DNA Repair - physiology ; Humans ; Hydrogen Peroxide - toxicity ; Internal Medicine ; Neurology ; Neuron ; Neurons - drug effects ; Neurons - physiology ; Postmitotic</subject><ispartof>Neurobiology of aging, 2013-07, Vol.34 (7), p.1717-1727</ispartof><rights>2013</rights><rights>Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c682t-3bff01cb3bace9a7831ddbd3d745d058ef405586fceb540d4293fe4ef39635873</citedby><cites>FETCH-LOGICAL-c682t-3bff01cb3bace9a7831ddbd3d745d058ef405586fceb540d4293fe4ef39635873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0197458012006471$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23375654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sykora, Peter</creatorcontrib><creatorcontrib>Yang, Jenq-Lin</creatorcontrib><creatorcontrib>Ferrarelli, Leslie K</creatorcontrib><creatorcontrib>Tian, Jingyan</creatorcontrib><creatorcontrib>Tadokoro, Takashi</creatorcontrib><creatorcontrib>Kulkarni, Avanti</creatorcontrib><creatorcontrib>Weissman, Lior</creatorcontrib><creatorcontrib>Keijzers, Guido</creatorcontrib><creatorcontrib>Wilson, David M</creatorcontrib><creatorcontrib>Mattson, Mark P</creatorcontrib><creatorcontrib>Bohr, Vilhelm A</creatorcontrib><title>Modulation of DNA base excision repair during neuronal differentiation</title><title>Neurobiology of aging</title><addtitle>Neurobiol Aging</addtitle><description>Abstract Neurons are terminally differentiated cells with a high rate of metabolism and multiple biological properties distinct from their undifferentiated precursors. Previous studies showed that nucleotide excision DNA repair is downregulated in postmitotic muscle cells and neurons. Here, we characterize DNA damage susceptibility and base excision DNA repair (BER) capacity in undifferentiated and differentiated human neural cells. The results show that undifferentiated human SH-SY5Y neuroblastoma cells are less sensitive to oxidative damage than their differentiated counterparts, in part because they have robust BER capacity, which is heavily attenuated in postmitotic neurons. The reduction in BER activity in differentiated cells correlates with diminished protein levels of key long patch BER components, flap endonuclease-1, proliferating cell nuclear antigen, and ligase I. Thus, because of their higher BER capacity, proliferative neural progenitor cells are more efficient at repairing DNA damage compared with their neuronally differentiated progeny.</description><subject>Aging</subject><subject>BER</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Line, Tumor</subject><subject>Differentiation</subject><subject>DNA - metabolism</subject><subject>DNA - physiology</subject><subject>DNA damage</subject><subject>DNA Damage - drug effects</subject><subject>DNA Damage - physiology</subject><subject>DNA repair</subject><subject>DNA Repair - drug effects</subject><subject>DNA Repair - physiology</subject><subject>Humans</subject><subject>Hydrogen Peroxide - toxicity</subject><subject>Internal Medicine</subject><subject>Neurology</subject><subject>Neuron</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Postmitotic</subject><issn>0197-4580</issn><issn>1558-1497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk1v1DAQtRAVXQp_AeXAgUu2dmzHjoQqVS0LlVo4AGfLsceLF2-82ElF_z1Ot61aLiCNZMnz3puPNwi9JXhJMGmPN8sBphR7H4Ne-2G9bDBpliVK8hlaEM5lTVgnnqMFJp2oGZf4EL3MeYMxFky0L9BhQ6ngLWcLtLqKdgp69HGooqvOP59Wvc5QwW_j8_yZYKd9quyUSq3qtvSgQ2W9c5BgGP0t9xU6cDpkeH33HqHvqw_fzj7Vl18-XpydXtamlc1Y0945TExPe22g00JSYm1vqRWMW8wlOIZL_60z0HOGLWs66oCBo11LuRT0CJ3sdXdTvwVrSgNJB7VLfqvTjYraq6eZwf9Q63itOBet7FgReHcnkOKvCfKotj4bCEEPEKesCG8wFVLI5t9QyiTrCJayQN_voSbFnBO4h44IVrNraqOeuqZm11SJkiz0N4-neiDf21QAqz0Aym6vPSSVjYfBgPUJzKhs9P9b6eQvIRP84I0OP-EG8iZOqbhbZlO5ENTX-YLmAyINxi0ThP4BYk_IIg</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Sykora, Peter</creator><creator>Yang, Jenq-Lin</creator><creator>Ferrarelli, Leslie K</creator><creator>Tian, Jingyan</creator><creator>Tadokoro, Takashi</creator><creator>Kulkarni, Avanti</creator><creator>Weissman, Lior</creator><creator>Keijzers, Guido</creator><creator>Wilson, David M</creator><creator>Mattson, Mark P</creator><creator>Bohr, Vilhelm A</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20130701</creationdate><title>Modulation of DNA base excision repair during neuronal differentiation</title><author>Sykora, Peter ; Yang, Jenq-Lin ; Ferrarelli, Leslie K ; Tian, Jingyan ; Tadokoro, Takashi ; Kulkarni, Avanti ; Weissman, Lior ; Keijzers, Guido ; Wilson, David M ; Mattson, Mark P ; Bohr, Vilhelm A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c682t-3bff01cb3bace9a7831ddbd3d745d058ef405586fceb540d4293fe4ef39635873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aging</topic><topic>BER</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Line, Tumor</topic><topic>Differentiation</topic><topic>DNA - metabolism</topic><topic>DNA - physiology</topic><topic>DNA damage</topic><topic>DNA Damage - drug effects</topic><topic>DNA Damage - physiology</topic><topic>DNA repair</topic><topic>DNA Repair - drug effects</topic><topic>DNA Repair - physiology</topic><topic>Humans</topic><topic>Hydrogen Peroxide - toxicity</topic><topic>Internal Medicine</topic><topic>Neurology</topic><topic>Neuron</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Postmitotic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sykora, Peter</creatorcontrib><creatorcontrib>Yang, Jenq-Lin</creatorcontrib><creatorcontrib>Ferrarelli, Leslie K</creatorcontrib><creatorcontrib>Tian, Jingyan</creatorcontrib><creatorcontrib>Tadokoro, Takashi</creatorcontrib><creatorcontrib>Kulkarni, Avanti</creatorcontrib><creatorcontrib>Weissman, Lior</creatorcontrib><creatorcontrib>Keijzers, Guido</creatorcontrib><creatorcontrib>Wilson, David M</creatorcontrib><creatorcontrib>Mattson, Mark P</creatorcontrib><creatorcontrib>Bohr, Vilhelm A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurobiology of aging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sykora, Peter</au><au>Yang, Jenq-Lin</au><au>Ferrarelli, Leslie K</au><au>Tian, Jingyan</au><au>Tadokoro, Takashi</au><au>Kulkarni, Avanti</au><au>Weissman, Lior</au><au>Keijzers, Guido</au><au>Wilson, David M</au><au>Mattson, Mark P</au><au>Bohr, Vilhelm A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of DNA base excision repair during neuronal differentiation</atitle><jtitle>Neurobiology of aging</jtitle><addtitle>Neurobiol Aging</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>34</volume><issue>7</issue><spage>1717</spage><epage>1727</epage><pages>1717-1727</pages><issn>0197-4580</issn><eissn>1558-1497</eissn><abstract>Abstract Neurons are terminally differentiated cells with a high rate of metabolism and multiple biological properties distinct from their undifferentiated precursors. Previous studies showed that nucleotide excision DNA repair is downregulated in postmitotic muscle cells and neurons. Here, we characterize DNA damage susceptibility and base excision DNA repair (BER) capacity in undifferentiated and differentiated human neural cells. The results show that undifferentiated human SH-SY5Y neuroblastoma cells are less sensitive to oxidative damage than their differentiated counterparts, in part because they have robust BER capacity, which is heavily attenuated in postmitotic neurons. The reduction in BER activity in differentiated cells correlates with diminished protein levels of key long patch BER components, flap endonuclease-1, proliferating cell nuclear antigen, and ligase I. Thus, because of their higher BER capacity, proliferative neural progenitor cells are more efficient at repairing DNA damage compared with their neuronally differentiated progeny.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23375654</pmid><doi>10.1016/j.neurobiolaging.2012.12.016</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0197-4580
ispartof Neurobiology of aging, 2013-07, Vol.34 (7), p.1717-1727
issn 0197-4580
1558-1497
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5576894
source MEDLINE; Elsevier ScienceDirect Journals
subjects Aging
BER
Cell Differentiation - drug effects
Cell Differentiation - physiology
Cell Line, Tumor
Differentiation
DNA - metabolism
DNA - physiology
DNA damage
DNA Damage - drug effects
DNA Damage - physiology
DNA repair
DNA Repair - drug effects
DNA Repair - physiology
Humans
Hydrogen Peroxide - toxicity
Internal Medicine
Neurology
Neuron
Neurons - drug effects
Neurons - physiology
Postmitotic
title Modulation of DNA base excision repair during neuronal differentiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20DNA%20base%20excision%20repair%20during%20neuronal%20differentiation&rft.jtitle=Neurobiology%20of%20aging&rft.au=Sykora,%20Peter&rft.date=2013-07-01&rft.volume=34&rft.issue=7&rft.spage=1717&rft.epage=1727&rft.pages=1717-1727&rft.issn=0197-4580&rft.eissn=1558-1497&rft_id=info:doi/10.1016/j.neurobiolaging.2012.12.016&rft_dat=%3Cproquest_pubme%3E1348491088%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348491088&rft_id=info:pmid/23375654&rft_els_id=S0197458012006471&rfr_iscdi=true