High-Throughput Phenotypic Screening of Kinase Inhibitors to Identify Drug Targets for Polycystic Kidney Disease

Polycystic kidney disease (PKD) is a prevalent disorder characterized by renal cysts that lead to kidney failure. Various signaling pathways have been targeted to stop disease progression, but most interventions still focus on alleviating PKD-associated symptoms. The mechanistic complexity of the di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SLAS discovery 2017-09, Vol.22 (8), p.974-984
Hauptverfasser: Booij, Tijmen H., Bange, Hester, Leonhard, Wouter N., Yan, Kuan, Fokkelman, Michiel, Kunnen, Steven J., Dauwerse, Johannes G., Qin, Yu, van de Water, Bob, van Westen, Gerard J. P., Peters, Dorien J. M., Price, Leo S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 984
container_issue 8
container_start_page 974
container_title SLAS discovery
container_volume 22
creator Booij, Tijmen H.
Bange, Hester
Leonhard, Wouter N.
Yan, Kuan
Fokkelman, Michiel
Kunnen, Steven J.
Dauwerse, Johannes G.
Qin, Yu
van de Water, Bob
van Westen, Gerard J. P.
Peters, Dorien J. M.
Price, Leo S.
description Polycystic kidney disease (PKD) is a prevalent disorder characterized by renal cysts that lead to kidney failure. Various signaling pathways have been targeted to stop disease progression, but most interventions still focus on alleviating PKD-associated symptoms. The mechanistic complexity of the disease, as well as the lack of functional in vitro assays for compound testing, has made drug discovery for PKD challenging. To identify modulators of PKD, Pkd1–/– kidney tubule epithelial cells were applied to a scalable and automated 3D cyst culture model for compound screening, followed by phenotypic profiling to determine compound efficacy. We used this screening platform to screen a library of 273 kinase inhibitors to probe various signaling pathways involved in cyst growth. We show that inhibition of several targets, including aurora kinase, CDK, Chk, IGF-1R, Syk, and mTOR, but, surprisingly, not PI3K, prevented forskolin-induced cyst swelling. Additionally, we show that multiparametric phenotypic classification discriminated potentially undesirable (i.e., cytotoxic) compounds from molecules inducing the desired phenotypic change, greatly facilitating hit selection and validation. Our findings show that a pathophysiologically relevant 3D cyst culture model of PKD coupled to phenotypic profiling can be used to identify potentially therapeutic compounds and predict and validate molecular targets for PKD.
doi_str_mv 10.1177/2472555217716056
format Article
fullrecord <record><control><sourceid>sage_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5574491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_2472555217716056</sage_id><sourcerecordid>10.1177_2472555217716056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-d6505df2a509a5d62396c4e708b931d886f594e6d6d68d95009657a786aa3cc93</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMobujuvZL8gWrS5qO9EWR-bGyg4LwuWZK2GVtSklbovzdjOlSQc3EOOe_7nHAOAFcY3WDM-W1KeEopTWONGaLsBIz3TwmlDJ0ea5qOwCSEDUIIc5bFOAejNGeE8IyMQTszdZOsGu_6umn7Dr422rpuaI2Eb9JrbY2toavgwlgRNJzbxqxN53yAnYNzpW1nqgE--L6GK-Fr3QVYOQ9f3XaQQ-giZmGU1VFigo6ES3BWiW3Qk698Ad6fHlfTWbJ8eZ5P75eJJBnpEsUooqpKBUWFoIqlWcEk0Rzl6yLDKs9ZRQuimYqRq4IiVDDKBc-ZEJmURXYB7g7ctl_vtJLxo15sy9abnfBD6YQpf3esacrafZSUckIKHAHoAJDeheB1dfRiVO4PUP49QLRc_5x5NHyvOwqSgyCIWpcb13sbd_A_8BOsnY-F</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Throughput Phenotypic Screening of Kinase Inhibitors to Identify Drug Targets for Polycystic Kidney Disease</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Booij, Tijmen H. ; Bange, Hester ; Leonhard, Wouter N. ; Yan, Kuan ; Fokkelman, Michiel ; Kunnen, Steven J. ; Dauwerse, Johannes G. ; Qin, Yu ; van de Water, Bob ; van Westen, Gerard J. P. ; Peters, Dorien J. M. ; Price, Leo S.</creator><creatorcontrib>Booij, Tijmen H. ; Bange, Hester ; Leonhard, Wouter N. ; Yan, Kuan ; Fokkelman, Michiel ; Kunnen, Steven J. ; Dauwerse, Johannes G. ; Qin, Yu ; van de Water, Bob ; van Westen, Gerard J. P. ; Peters, Dorien J. M. ; Price, Leo S.</creatorcontrib><description>Polycystic kidney disease (PKD) is a prevalent disorder characterized by renal cysts that lead to kidney failure. Various signaling pathways have been targeted to stop disease progression, but most interventions still focus on alleviating PKD-associated symptoms. The mechanistic complexity of the disease, as well as the lack of functional in vitro assays for compound testing, has made drug discovery for PKD challenging. To identify modulators of PKD, Pkd1–/– kidney tubule epithelial cells were applied to a scalable and automated 3D cyst culture model for compound screening, followed by phenotypic profiling to determine compound efficacy. We used this screening platform to screen a library of 273 kinase inhibitors to probe various signaling pathways involved in cyst growth. We show that inhibition of several targets, including aurora kinase, CDK, Chk, IGF-1R, Syk, and mTOR, but, surprisingly, not PI3K, prevented forskolin-induced cyst swelling. Additionally, we show that multiparametric phenotypic classification discriminated potentially undesirable (i.e., cytotoxic) compounds from molecules inducing the desired phenotypic change, greatly facilitating hit selection and validation. Our findings show that a pathophysiologically relevant 3D cyst culture model of PKD coupled to phenotypic profiling can be used to identify potentially therapeutic compounds and predict and validate molecular targets for PKD.</description><identifier>ISSN: 2472-5552</identifier><identifier>EISSN: 2472-5560</identifier><identifier>DOI: 10.1177/2472555217716056</identifier><identifier>PMID: 28644734</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Original Research</subject><ispartof>SLAS discovery, 2017-09, Vol.22 (8), p.974-984</ispartof><rights>2017 Society for Laboratory Automation and Screening</rights><rights>2017 Society for Laboratory Automation and Screening 2017 Society for Laboratory Automation and Screening</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-d6505df2a509a5d62396c4e708b931d886f594e6d6d68d95009657a786aa3cc93</citedby><cites>FETCH-LOGICAL-c434t-d6505df2a509a5d62396c4e708b931d886f594e6d6d68d95009657a786aa3cc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28644734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Booij, Tijmen H.</creatorcontrib><creatorcontrib>Bange, Hester</creatorcontrib><creatorcontrib>Leonhard, Wouter N.</creatorcontrib><creatorcontrib>Yan, Kuan</creatorcontrib><creatorcontrib>Fokkelman, Michiel</creatorcontrib><creatorcontrib>Kunnen, Steven J.</creatorcontrib><creatorcontrib>Dauwerse, Johannes G.</creatorcontrib><creatorcontrib>Qin, Yu</creatorcontrib><creatorcontrib>van de Water, Bob</creatorcontrib><creatorcontrib>van Westen, Gerard J. P.</creatorcontrib><creatorcontrib>Peters, Dorien J. M.</creatorcontrib><creatorcontrib>Price, Leo S.</creatorcontrib><title>High-Throughput Phenotypic Screening of Kinase Inhibitors to Identify Drug Targets for Polycystic Kidney Disease</title><title>SLAS discovery</title><addtitle>J Biomol Screen</addtitle><description>Polycystic kidney disease (PKD) is a prevalent disorder characterized by renal cysts that lead to kidney failure. Various signaling pathways have been targeted to stop disease progression, but most interventions still focus on alleviating PKD-associated symptoms. The mechanistic complexity of the disease, as well as the lack of functional in vitro assays for compound testing, has made drug discovery for PKD challenging. To identify modulators of PKD, Pkd1–/– kidney tubule epithelial cells were applied to a scalable and automated 3D cyst culture model for compound screening, followed by phenotypic profiling to determine compound efficacy. We used this screening platform to screen a library of 273 kinase inhibitors to probe various signaling pathways involved in cyst growth. We show that inhibition of several targets, including aurora kinase, CDK, Chk, IGF-1R, Syk, and mTOR, but, surprisingly, not PI3K, prevented forskolin-induced cyst swelling. Additionally, we show that multiparametric phenotypic classification discriminated potentially undesirable (i.e., cytotoxic) compounds from molecules inducing the desired phenotypic change, greatly facilitating hit selection and validation. Our findings show that a pathophysiologically relevant 3D cyst culture model of PKD coupled to phenotypic profiling can be used to identify potentially therapeutic compounds and predict and validate molecular targets for PKD.</description><subject>Original Research</subject><issn>2472-5552</issn><issn>2472-5560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1kV1LwzAUhoMobujuvZL8gWrS5qO9EWR-bGyg4LwuWZK2GVtSklbovzdjOlSQc3EOOe_7nHAOAFcY3WDM-W1KeEopTWONGaLsBIz3TwmlDJ0ea5qOwCSEDUIIc5bFOAejNGeE8IyMQTszdZOsGu_6umn7Dr422rpuaI2Eb9JrbY2toavgwlgRNJzbxqxN53yAnYNzpW1nqgE--L6GK-Fr3QVYOQ9f3XaQQ-giZmGU1VFigo6ES3BWiW3Qk698Ad6fHlfTWbJ8eZ5P75eJJBnpEsUooqpKBUWFoIqlWcEk0Rzl6yLDKs9ZRQuimYqRq4IiVDDKBc-ZEJmURXYB7g7ctl_vtJLxo15sy9abnfBD6YQpf3esacrafZSUckIKHAHoAJDeheB1dfRiVO4PUP49QLRc_5x5NHyvOwqSgyCIWpcb13sbd_A_8BOsnY-F</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Booij, Tijmen H.</creator><creator>Bange, Hester</creator><creator>Leonhard, Wouter N.</creator><creator>Yan, Kuan</creator><creator>Fokkelman, Michiel</creator><creator>Kunnen, Steven J.</creator><creator>Dauwerse, Johannes G.</creator><creator>Qin, Yu</creator><creator>van de Water, Bob</creator><creator>van Westen, Gerard J. P.</creator><creator>Peters, Dorien J. M.</creator><creator>Price, Leo S.</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20170901</creationdate><title>High-Throughput Phenotypic Screening of Kinase Inhibitors to Identify Drug Targets for Polycystic Kidney Disease</title><author>Booij, Tijmen H. ; Bange, Hester ; Leonhard, Wouter N. ; Yan, Kuan ; Fokkelman, Michiel ; Kunnen, Steven J. ; Dauwerse, Johannes G. ; Qin, Yu ; van de Water, Bob ; van Westen, Gerard J. P. ; Peters, Dorien J. M. ; Price, Leo S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-d6505df2a509a5d62396c4e708b931d886f594e6d6d68d95009657a786aa3cc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Original Research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Booij, Tijmen H.</creatorcontrib><creatorcontrib>Bange, Hester</creatorcontrib><creatorcontrib>Leonhard, Wouter N.</creatorcontrib><creatorcontrib>Yan, Kuan</creatorcontrib><creatorcontrib>Fokkelman, Michiel</creatorcontrib><creatorcontrib>Kunnen, Steven J.</creatorcontrib><creatorcontrib>Dauwerse, Johannes G.</creatorcontrib><creatorcontrib>Qin, Yu</creatorcontrib><creatorcontrib>van de Water, Bob</creatorcontrib><creatorcontrib>van Westen, Gerard J. P.</creatorcontrib><creatorcontrib>Peters, Dorien J. M.</creatorcontrib><creatorcontrib>Price, Leo S.</creatorcontrib><collection>SAGE Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>SLAS discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Booij, Tijmen H.</au><au>Bange, Hester</au><au>Leonhard, Wouter N.</au><au>Yan, Kuan</au><au>Fokkelman, Michiel</au><au>Kunnen, Steven J.</au><au>Dauwerse, Johannes G.</au><au>Qin, Yu</au><au>van de Water, Bob</au><au>van Westen, Gerard J. P.</au><au>Peters, Dorien J. M.</au><au>Price, Leo S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Throughput Phenotypic Screening of Kinase Inhibitors to Identify Drug Targets for Polycystic Kidney Disease</atitle><jtitle>SLAS discovery</jtitle><addtitle>J Biomol Screen</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>22</volume><issue>8</issue><spage>974</spage><epage>984</epage><pages>974-984</pages><issn>2472-5552</issn><eissn>2472-5560</eissn><abstract>Polycystic kidney disease (PKD) is a prevalent disorder characterized by renal cysts that lead to kidney failure. Various signaling pathways have been targeted to stop disease progression, but most interventions still focus on alleviating PKD-associated symptoms. The mechanistic complexity of the disease, as well as the lack of functional in vitro assays for compound testing, has made drug discovery for PKD challenging. To identify modulators of PKD, Pkd1–/– kidney tubule epithelial cells were applied to a scalable and automated 3D cyst culture model for compound screening, followed by phenotypic profiling to determine compound efficacy. We used this screening platform to screen a library of 273 kinase inhibitors to probe various signaling pathways involved in cyst growth. We show that inhibition of several targets, including aurora kinase, CDK, Chk, IGF-1R, Syk, and mTOR, but, surprisingly, not PI3K, prevented forskolin-induced cyst swelling. Additionally, we show that multiparametric phenotypic classification discriminated potentially undesirable (i.e., cytotoxic) compounds from molecules inducing the desired phenotypic change, greatly facilitating hit selection and validation. Our findings show that a pathophysiologically relevant 3D cyst culture model of PKD coupled to phenotypic profiling can be used to identify potentially therapeutic compounds and predict and validate molecular targets for PKD.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>28644734</pmid><doi>10.1177/2472555217716056</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2472-5552
ispartof SLAS discovery, 2017-09, Vol.22 (8), p.974-984
issn 2472-5552
2472-5560
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5574491
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Original Research
title High-Throughput Phenotypic Screening of Kinase Inhibitors to Identify Drug Targets for Polycystic Kidney Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Throughput%20Phenotypic%20Screening%20of%20Kinase%20Inhibitors%20to%20Identify%20Drug%20Targets%20for%20Polycystic%20Kidney%20Disease&rft.jtitle=SLAS%20discovery&rft.au=Booij,%20Tijmen%20H.&rft.date=2017-09-01&rft.volume=22&rft.issue=8&rft.spage=974&rft.epage=984&rft.pages=974-984&rft.issn=2472-5552&rft.eissn=2472-5560&rft_id=info:doi/10.1177/2472555217716056&rft_dat=%3Csage_pubme%3E10.1177_2472555217716056%3C/sage_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28644734&rft_sage_id=10.1177_2472555217716056&rfr_iscdi=true