High-Throughput Phenotypic Screening of Kinase Inhibitors to Identify Drug Targets for Polycystic Kidney Disease
Polycystic kidney disease (PKD) is a prevalent disorder characterized by renal cysts that lead to kidney failure. Various signaling pathways have been targeted to stop disease progression, but most interventions still focus on alleviating PKD-associated symptoms. The mechanistic complexity of the di...
Gespeichert in:
Veröffentlicht in: | SLAS discovery 2017-09, Vol.22 (8), p.974-984 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 984 |
---|---|
container_issue | 8 |
container_start_page | 974 |
container_title | SLAS discovery |
container_volume | 22 |
creator | Booij, Tijmen H. Bange, Hester Leonhard, Wouter N. Yan, Kuan Fokkelman, Michiel Kunnen, Steven J. Dauwerse, Johannes G. Qin, Yu van de Water, Bob van Westen, Gerard J. P. Peters, Dorien J. M. Price, Leo S. |
description | Polycystic kidney disease (PKD) is a prevalent disorder characterized by renal cysts that lead to kidney failure. Various signaling pathways have been targeted to stop disease progression, but most interventions still focus on alleviating PKD-associated symptoms. The mechanistic complexity of the disease, as well as the lack of functional in vitro assays for compound testing, has made drug discovery for PKD challenging. To identify modulators of PKD, Pkd1–/– kidney tubule epithelial cells were applied to a scalable and automated 3D cyst culture model for compound screening, followed by phenotypic profiling to determine compound efficacy. We used this screening platform to screen a library of 273 kinase inhibitors to probe various signaling pathways involved in cyst growth. We show that inhibition of several targets, including aurora kinase, CDK, Chk, IGF-1R, Syk, and mTOR, but, surprisingly, not PI3K, prevented forskolin-induced cyst swelling. Additionally, we show that multiparametric phenotypic classification discriminated potentially undesirable (i.e., cytotoxic) compounds from molecules inducing the desired phenotypic change, greatly facilitating hit selection and validation. Our findings show that a pathophysiologically relevant 3D cyst culture model of PKD coupled to phenotypic profiling can be used to identify potentially therapeutic compounds and predict and validate molecular targets for PKD. |
doi_str_mv | 10.1177/2472555217716056 |
format | Article |
fullrecord | <record><control><sourceid>sage_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5574491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_2472555217716056</sage_id><sourcerecordid>10.1177_2472555217716056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-d6505df2a509a5d62396c4e708b931d886f594e6d6d68d95009657a786aa3cc93</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMobujuvZL8gWrS5qO9EWR-bGyg4LwuWZK2GVtSklbovzdjOlSQc3EOOe_7nHAOAFcY3WDM-W1KeEopTWONGaLsBIz3TwmlDJ0ea5qOwCSEDUIIc5bFOAejNGeE8IyMQTszdZOsGu_6umn7Dr422rpuaI2Eb9JrbY2toavgwlgRNJzbxqxN53yAnYNzpW1nqgE--L6GK-Fr3QVYOQ9f3XaQQ-giZmGU1VFigo6ES3BWiW3Qk698Ad6fHlfTWbJ8eZ5P75eJJBnpEsUooqpKBUWFoIqlWcEk0Rzl6yLDKs9ZRQuimYqRq4IiVDDKBc-ZEJmURXYB7g7ctl_vtJLxo15sy9abnfBD6YQpf3esacrafZSUckIKHAHoAJDeheB1dfRiVO4PUP49QLRc_5x5NHyvOwqSgyCIWpcb13sbd_A_8BOsnY-F</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Throughput Phenotypic Screening of Kinase Inhibitors to Identify Drug Targets for Polycystic Kidney Disease</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Booij, Tijmen H. ; Bange, Hester ; Leonhard, Wouter N. ; Yan, Kuan ; Fokkelman, Michiel ; Kunnen, Steven J. ; Dauwerse, Johannes G. ; Qin, Yu ; van de Water, Bob ; van Westen, Gerard J. P. ; Peters, Dorien J. M. ; Price, Leo S.</creator><creatorcontrib>Booij, Tijmen H. ; Bange, Hester ; Leonhard, Wouter N. ; Yan, Kuan ; Fokkelman, Michiel ; Kunnen, Steven J. ; Dauwerse, Johannes G. ; Qin, Yu ; van de Water, Bob ; van Westen, Gerard J. P. ; Peters, Dorien J. M. ; Price, Leo S.</creatorcontrib><description>Polycystic kidney disease (PKD) is a prevalent disorder characterized by renal cysts that lead to kidney failure. Various signaling pathways have been targeted to stop disease progression, but most interventions still focus on alleviating PKD-associated symptoms. The mechanistic complexity of the disease, as well as the lack of functional in vitro assays for compound testing, has made drug discovery for PKD challenging. To identify modulators of PKD, Pkd1–/– kidney tubule epithelial cells were applied to a scalable and automated 3D cyst culture model for compound screening, followed by phenotypic profiling to determine compound efficacy. We used this screening platform to screen a library of 273 kinase inhibitors to probe various signaling pathways involved in cyst growth. We show that inhibition of several targets, including aurora kinase, CDK, Chk, IGF-1R, Syk, and mTOR, but, surprisingly, not PI3K, prevented forskolin-induced cyst swelling. Additionally, we show that multiparametric phenotypic classification discriminated potentially undesirable (i.e., cytotoxic) compounds from molecules inducing the desired phenotypic change, greatly facilitating hit selection and validation. Our findings show that a pathophysiologically relevant 3D cyst culture model of PKD coupled to phenotypic profiling can be used to identify potentially therapeutic compounds and predict and validate molecular targets for PKD.</description><identifier>ISSN: 2472-5552</identifier><identifier>EISSN: 2472-5560</identifier><identifier>DOI: 10.1177/2472555217716056</identifier><identifier>PMID: 28644734</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Original Research</subject><ispartof>SLAS discovery, 2017-09, Vol.22 (8), p.974-984</ispartof><rights>2017 Society for Laboratory Automation and Screening</rights><rights>2017 Society for Laboratory Automation and Screening 2017 Society for Laboratory Automation and Screening</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-d6505df2a509a5d62396c4e708b931d886f594e6d6d68d95009657a786aa3cc93</citedby><cites>FETCH-LOGICAL-c434t-d6505df2a509a5d62396c4e708b931d886f594e6d6d68d95009657a786aa3cc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28644734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Booij, Tijmen H.</creatorcontrib><creatorcontrib>Bange, Hester</creatorcontrib><creatorcontrib>Leonhard, Wouter N.</creatorcontrib><creatorcontrib>Yan, Kuan</creatorcontrib><creatorcontrib>Fokkelman, Michiel</creatorcontrib><creatorcontrib>Kunnen, Steven J.</creatorcontrib><creatorcontrib>Dauwerse, Johannes G.</creatorcontrib><creatorcontrib>Qin, Yu</creatorcontrib><creatorcontrib>van de Water, Bob</creatorcontrib><creatorcontrib>van Westen, Gerard J. P.</creatorcontrib><creatorcontrib>Peters, Dorien J. M.</creatorcontrib><creatorcontrib>Price, Leo S.</creatorcontrib><title>High-Throughput Phenotypic Screening of Kinase Inhibitors to Identify Drug Targets for Polycystic Kidney Disease</title><title>SLAS discovery</title><addtitle>J Biomol Screen</addtitle><description>Polycystic kidney disease (PKD) is a prevalent disorder characterized by renal cysts that lead to kidney failure. Various signaling pathways have been targeted to stop disease progression, but most interventions still focus on alleviating PKD-associated symptoms. The mechanistic complexity of the disease, as well as the lack of functional in vitro assays for compound testing, has made drug discovery for PKD challenging. To identify modulators of PKD, Pkd1–/– kidney tubule epithelial cells were applied to a scalable and automated 3D cyst culture model for compound screening, followed by phenotypic profiling to determine compound efficacy. We used this screening platform to screen a library of 273 kinase inhibitors to probe various signaling pathways involved in cyst growth. We show that inhibition of several targets, including aurora kinase, CDK, Chk, IGF-1R, Syk, and mTOR, but, surprisingly, not PI3K, prevented forskolin-induced cyst swelling. Additionally, we show that multiparametric phenotypic classification discriminated potentially undesirable (i.e., cytotoxic) compounds from molecules inducing the desired phenotypic change, greatly facilitating hit selection and validation. Our findings show that a pathophysiologically relevant 3D cyst culture model of PKD coupled to phenotypic profiling can be used to identify potentially therapeutic compounds and predict and validate molecular targets for PKD.</description><subject>Original Research</subject><issn>2472-5552</issn><issn>2472-5560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1kV1LwzAUhoMobujuvZL8gWrS5qO9EWR-bGyg4LwuWZK2GVtSklbovzdjOlSQc3EOOe_7nHAOAFcY3WDM-W1KeEopTWONGaLsBIz3TwmlDJ0ea5qOwCSEDUIIc5bFOAejNGeE8IyMQTszdZOsGu_6umn7Dr422rpuaI2Eb9JrbY2toavgwlgRNJzbxqxN53yAnYNzpW1nqgE--L6GK-Fr3QVYOQ9f3XaQQ-giZmGU1VFigo6ES3BWiW3Qk698Ad6fHlfTWbJ8eZ5P75eJJBnpEsUooqpKBUWFoIqlWcEk0Rzl6yLDKs9ZRQuimYqRq4IiVDDKBc-ZEJmURXYB7g7ctl_vtJLxo15sy9abnfBD6YQpf3esacrafZSUckIKHAHoAJDeheB1dfRiVO4PUP49QLRc_5x5NHyvOwqSgyCIWpcb13sbd_A_8BOsnY-F</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Booij, Tijmen H.</creator><creator>Bange, Hester</creator><creator>Leonhard, Wouter N.</creator><creator>Yan, Kuan</creator><creator>Fokkelman, Michiel</creator><creator>Kunnen, Steven J.</creator><creator>Dauwerse, Johannes G.</creator><creator>Qin, Yu</creator><creator>van de Water, Bob</creator><creator>van Westen, Gerard J. P.</creator><creator>Peters, Dorien J. M.</creator><creator>Price, Leo S.</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20170901</creationdate><title>High-Throughput Phenotypic Screening of Kinase Inhibitors to Identify Drug Targets for Polycystic Kidney Disease</title><author>Booij, Tijmen H. ; Bange, Hester ; Leonhard, Wouter N. ; Yan, Kuan ; Fokkelman, Michiel ; Kunnen, Steven J. ; Dauwerse, Johannes G. ; Qin, Yu ; van de Water, Bob ; van Westen, Gerard J. P. ; Peters, Dorien J. M. ; Price, Leo S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-d6505df2a509a5d62396c4e708b931d886f594e6d6d68d95009657a786aa3cc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Original Research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Booij, Tijmen H.</creatorcontrib><creatorcontrib>Bange, Hester</creatorcontrib><creatorcontrib>Leonhard, Wouter N.</creatorcontrib><creatorcontrib>Yan, Kuan</creatorcontrib><creatorcontrib>Fokkelman, Michiel</creatorcontrib><creatorcontrib>Kunnen, Steven J.</creatorcontrib><creatorcontrib>Dauwerse, Johannes G.</creatorcontrib><creatorcontrib>Qin, Yu</creatorcontrib><creatorcontrib>van de Water, Bob</creatorcontrib><creatorcontrib>van Westen, Gerard J. P.</creatorcontrib><creatorcontrib>Peters, Dorien J. M.</creatorcontrib><creatorcontrib>Price, Leo S.</creatorcontrib><collection>SAGE Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>SLAS discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Booij, Tijmen H.</au><au>Bange, Hester</au><au>Leonhard, Wouter N.</au><au>Yan, Kuan</au><au>Fokkelman, Michiel</au><au>Kunnen, Steven J.</au><au>Dauwerse, Johannes G.</au><au>Qin, Yu</au><au>van de Water, Bob</au><au>van Westen, Gerard J. P.</au><au>Peters, Dorien J. M.</au><au>Price, Leo S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Throughput Phenotypic Screening of Kinase Inhibitors to Identify Drug Targets for Polycystic Kidney Disease</atitle><jtitle>SLAS discovery</jtitle><addtitle>J Biomol Screen</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>22</volume><issue>8</issue><spage>974</spage><epage>984</epage><pages>974-984</pages><issn>2472-5552</issn><eissn>2472-5560</eissn><abstract>Polycystic kidney disease (PKD) is a prevalent disorder characterized by renal cysts that lead to kidney failure. Various signaling pathways have been targeted to stop disease progression, but most interventions still focus on alleviating PKD-associated symptoms. The mechanistic complexity of the disease, as well as the lack of functional in vitro assays for compound testing, has made drug discovery for PKD challenging. To identify modulators of PKD, Pkd1–/– kidney tubule epithelial cells were applied to a scalable and automated 3D cyst culture model for compound screening, followed by phenotypic profiling to determine compound efficacy. We used this screening platform to screen a library of 273 kinase inhibitors to probe various signaling pathways involved in cyst growth. We show that inhibition of several targets, including aurora kinase, CDK, Chk, IGF-1R, Syk, and mTOR, but, surprisingly, not PI3K, prevented forskolin-induced cyst swelling. Additionally, we show that multiparametric phenotypic classification discriminated potentially undesirable (i.e., cytotoxic) compounds from molecules inducing the desired phenotypic change, greatly facilitating hit selection and validation. Our findings show that a pathophysiologically relevant 3D cyst culture model of PKD coupled to phenotypic profiling can be used to identify potentially therapeutic compounds and predict and validate molecular targets for PKD.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>28644734</pmid><doi>10.1177/2472555217716056</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2472-5552 |
ispartof | SLAS discovery, 2017-09, Vol.22 (8), p.974-984 |
issn | 2472-5552 2472-5560 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5574491 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Original Research |
title | High-Throughput Phenotypic Screening of Kinase Inhibitors to Identify Drug Targets for Polycystic Kidney Disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Throughput%20Phenotypic%20Screening%20of%20Kinase%20Inhibitors%20to%20Identify%20Drug%20Targets%20for%20Polycystic%20Kidney%20Disease&rft.jtitle=SLAS%20discovery&rft.au=Booij,%20Tijmen%20H.&rft.date=2017-09-01&rft.volume=22&rft.issue=8&rft.spage=974&rft.epage=984&rft.pages=974-984&rft.issn=2472-5552&rft.eissn=2472-5560&rft_id=info:doi/10.1177/2472555217716056&rft_dat=%3Csage_pubme%3E10.1177_2472555217716056%3C/sage_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28644734&rft_sage_id=10.1177_2472555217716056&rfr_iscdi=true |