Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex
The developing human cortex contains diverse populations of neural progenitor cells, including a large proportion of outer radial glia (ORG), a progenitor type that is rare in the mouse. The authors identify a transcriptional signature of ORG characterized by markers of neuronal lineage fate and use...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2015-05, Vol.18 (5), p.637-646 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 646 |
---|---|
container_issue | 5 |
container_start_page | 637 |
container_title | Nature neuroscience |
container_volume | 18 |
creator | Johnson, Matthew B Wang, Peter P Atabay, Kutay D Murphy, Elisabeth A Doan, Ryan N Hecht, Jonathan L Walsh, Christopher A |
description | The developing human cortex contains diverse populations of neural progenitor cells, including a large proportion of outer radial glia (ORG), a progenitor type that is rare in the mouse. The authors identify a transcriptional signature of ORG characterized by markers of neuronal lineage fate and use single-cell analyses to contrast the heterogeneity of cortical progenitors across human, mouse and ferret.
The human cerebral cortex depends for its normal development and size on a precisely controlled balance between self-renewal and differentiation of diverse neural progenitor cells. Specialized progenitors that are common in humans but virtually absent in rodents, called outer radial glia (ORG), have been suggested to be crucial to the evolutionary expansion of the human cortex. We combined progenitor subtype–specific sorting with transcriptome-wide RNA sequencing to identify genes enriched in human ORG, which included targets of the transcription factor neurogenin and previously uncharacterized, evolutionarily dynamic long noncoding RNAs. Activating the neurogenin pathway in ferret progenitors promoted delamination and outward migration. Finally, single-cell transcriptional profiling in human, ferret and mouse revealed more cells coexpressing proneural neurogenin targets in human than in other species, suggesting greater neuronal lineage commitment and differentiation of self-renewing progenitors. Thus, we find that the abundance of human ORG is paralleled by increased transcriptional heterogeneity of cortical progenitors. |
doi_str_mv | 10.1038/nn.3980 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5568903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A413709022</galeid><sourcerecordid>A413709022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630t-672cb7a08ee9fd534e3bb4c53d98e50cb51a4be271b52fe8dfebd7286e1298433</originalsourceid><addsrcrecordid>eNqFkl1rFTEQhhdRbK3iP5AFL9SLPeb746ZQih-FgmD1Omazs3tS9iTHZLd4_r1ZW9ueIkguEmaeeZl5M1X1EqMVRlS9D2FFtUKPqkPMmWiwJOJxeSMtG0G4OKie5XyJEJJc6afVAeGSMqbxYfXjwodhhMbBONY22HGXfa4TXIEdcz0lG7JLfjv5WHL1GiZIcYAAftrVsa8DzKnEt3-Cfoop1z7U63ljQ-1imuDX8-pJX6Tgxc19VH3_-OHb6efm_Muns9OT88YJiqZGSOJaaZEC0H3HKQPatsxx2mkFHLmWY8taIBK3nPSguh7aThIlABOtGKVH1fG17nZuN9A5CKX50WyT39i0M9F6s58Jfm2GeGU4F0qjReDtjUCKP2fIk9n4vNhiA8Q5GywlVZRhhf-PisJKKrQu6OsH6GWcU_FyERSCaM4Yu6MGO4LxoY-lRbeImhOGqUQaEVKo1T-ocjrYeBcD9L7E9wre7RUUpvzINNg5Z3N28XWffXPNuhRzTtDfWoeRWXbMhGCWHSvkq_tO33J_l-rOnlxSYYB0b-YHWr8BX5DZgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766295444</pqid></control><display><type>article</type><title>Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Johnson, Matthew B ; Wang, Peter P ; Atabay, Kutay D ; Murphy, Elisabeth A ; Doan, Ryan N ; Hecht, Jonathan L ; Walsh, Christopher A</creator><creatorcontrib>Johnson, Matthew B ; Wang, Peter P ; Atabay, Kutay D ; Murphy, Elisabeth A ; Doan, Ryan N ; Hecht, Jonathan L ; Walsh, Christopher A</creatorcontrib><description>The developing human cortex contains diverse populations of neural progenitor cells, including a large proportion of outer radial glia (ORG), a progenitor type that is rare in the mouse. The authors identify a transcriptional signature of ORG characterized by markers of neuronal lineage fate and use single-cell analyses to contrast the heterogeneity of cortical progenitors across human, mouse and ferret.
The human cerebral cortex depends for its normal development and size on a precisely controlled balance between self-renewal and differentiation of diverse neural progenitor cells. Specialized progenitors that are common in humans but virtually absent in rodents, called outer radial glia (ORG), have been suggested to be crucial to the evolutionary expansion of the human cortex. We combined progenitor subtype–specific sorting with transcriptome-wide RNA sequencing to identify genes enriched in human ORG, which included targets of the transcription factor neurogenin and previously uncharacterized, evolutionarily dynamic long noncoding RNAs. Activating the neurogenin pathway in ferret progenitors promoted delamination and outward migration. Finally, single-cell transcriptional profiling in human, ferret and mouse revealed more cells coexpressing proneural neurogenin targets in human than in other species, suggesting greater neuronal lineage commitment and differentiation of self-renewing progenitors. Thus, we find that the abundance of human ORG is paralleled by increased transcriptional heterogeneity of cortical progenitors.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.3980</identifier><identifier>PMID: 25734491</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337/572 ; 631/378/2571/2579 ; 631/378/2571/2580 ; 631/553/2706 ; Animal Genetics and Genomics ; Animals ; Basic Helix-Loop-Helix Transcription Factors - biosynthesis ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Behavioral Sciences ; Biological Techniques ; Biomedicine ; Brain research ; Cerebral cortex ; Cerebral Cortex - cytology ; Cerebral Cortex - embryology ; Cerebral Cortex - metabolism ; Ependymoglial Cells - metabolism ; Ferrets ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Genetic aspects ; Genetic research ; Genetic transcription ; Humans ; Mice ; Molecular Sequence Data ; Mustela putorius furo ; Nerve Tissue Proteins - biosynthesis ; Nerve Tissue Proteins - genetics ; Neural Stem Cells - metabolism ; Neurobiology ; Neurogenesis ; Neurosciences ; RNA, Long Noncoding - genetics ; Sequence Alignment ; Sequence Analysis, RNA ; Sequence Homology, Nucleic Acid ; Single-Cell Analysis ; Species Specificity ; Transcription factors ; Transcription, Genetic</subject><ispartof>Nature neuroscience, 2015-05, Vol.18 (5), p.637-646</ispartof><rights>Springer Nature America, Inc. 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c630t-672cb7a08ee9fd534e3bb4c53d98e50cb51a4be271b52fe8dfebd7286e1298433</citedby><cites>FETCH-LOGICAL-c630t-672cb7a08ee9fd534e3bb4c53d98e50cb51a4be271b52fe8dfebd7286e1298433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.3980$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.3980$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25734491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Matthew B</creatorcontrib><creatorcontrib>Wang, Peter P</creatorcontrib><creatorcontrib>Atabay, Kutay D</creatorcontrib><creatorcontrib>Murphy, Elisabeth A</creatorcontrib><creatorcontrib>Doan, Ryan N</creatorcontrib><creatorcontrib>Hecht, Jonathan L</creatorcontrib><creatorcontrib>Walsh, Christopher A</creatorcontrib><title>Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>The developing human cortex contains diverse populations of neural progenitor cells, including a large proportion of outer radial glia (ORG), a progenitor type that is rare in the mouse. The authors identify a transcriptional signature of ORG characterized by markers of neuronal lineage fate and use single-cell analyses to contrast the heterogeneity of cortical progenitors across human, mouse and ferret.
The human cerebral cortex depends for its normal development and size on a precisely controlled balance between self-renewal and differentiation of diverse neural progenitor cells. Specialized progenitors that are common in humans but virtually absent in rodents, called outer radial glia (ORG), have been suggested to be crucial to the evolutionary expansion of the human cortex. We combined progenitor subtype–specific sorting with transcriptome-wide RNA sequencing to identify genes enriched in human ORG, which included targets of the transcription factor neurogenin and previously uncharacterized, evolutionarily dynamic long noncoding RNAs. Activating the neurogenin pathway in ferret progenitors promoted delamination and outward migration. Finally, single-cell transcriptional profiling in human, ferret and mouse revealed more cells coexpressing proneural neurogenin targets in human than in other species, suggesting greater neuronal lineage commitment and differentiation of self-renewing progenitors. Thus, we find that the abundance of human ORG is paralleled by increased transcriptional heterogeneity of cortical progenitors.</description><subject>631/337/572</subject><subject>631/378/2571/2579</subject><subject>631/378/2571/2580</subject><subject>631/553/2706</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Basic Helix-Loop-Helix Transcription Factors - biosynthesis</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedicine</subject><subject>Brain research</subject><subject>Cerebral cortex</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - embryology</subject><subject>Cerebral Cortex - metabolism</subject><subject>Ependymoglial Cells - metabolism</subject><subject>Ferrets</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genetic transcription</subject><subject>Humans</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Mustela putorius furo</subject><subject>Nerve Tissue Proteins - biosynthesis</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neurobiology</subject><subject>Neurogenesis</subject><subject>Neurosciences</subject><subject>RNA, Long Noncoding - genetics</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, RNA</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Single-Cell Analysis</subject><subject>Species Specificity</subject><subject>Transcription factors</subject><subject>Transcription, Genetic</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkl1rFTEQhhdRbK3iP5AFL9SLPeb746ZQih-FgmD1Omazs3tS9iTHZLd4_r1ZW9ueIkguEmaeeZl5M1X1EqMVRlS9D2FFtUKPqkPMmWiwJOJxeSMtG0G4OKie5XyJEJJc6afVAeGSMqbxYfXjwodhhMbBONY22HGXfa4TXIEdcz0lG7JLfjv5WHL1GiZIcYAAftrVsa8DzKnEt3-Cfoop1z7U63ljQ-1imuDX8-pJX6Tgxc19VH3_-OHb6efm_Muns9OT88YJiqZGSOJaaZEC0H3HKQPatsxx2mkFHLmWY8taIBK3nPSguh7aThIlABOtGKVH1fG17nZuN9A5CKX50WyT39i0M9F6s58Jfm2GeGU4F0qjReDtjUCKP2fIk9n4vNhiA8Q5GywlVZRhhf-PisJKKrQu6OsH6GWcU_FyERSCaM4Yu6MGO4LxoY-lRbeImhOGqUQaEVKo1T-ocjrYeBcD9L7E9wre7RUUpvzINNg5Z3N28XWffXPNuhRzTtDfWoeRWXbMhGCWHSvkq_tO33J_l-rOnlxSYYB0b-YHWr8BX5DZgw</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Johnson, Matthew B</creator><creator>Wang, Peter P</creator><creator>Atabay, Kutay D</creator><creator>Murphy, Elisabeth A</creator><creator>Doan, Ryan N</creator><creator>Hecht, Jonathan L</creator><creator>Walsh, Christopher A</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150501</creationdate><title>Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex</title><author>Johnson, Matthew B ; Wang, Peter P ; Atabay, Kutay D ; Murphy, Elisabeth A ; Doan, Ryan N ; Hecht, Jonathan L ; Walsh, Christopher A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630t-672cb7a08ee9fd534e3bb4c53d98e50cb51a4be271b52fe8dfebd7286e1298433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/337/572</topic><topic>631/378/2571/2579</topic><topic>631/378/2571/2580</topic><topic>631/553/2706</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Basic Helix-Loop-Helix Transcription Factors - biosynthesis</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedicine</topic><topic>Brain research</topic><topic>Cerebral cortex</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - embryology</topic><topic>Cerebral Cortex - metabolism</topic><topic>Ependymoglial Cells - metabolism</topic><topic>Ferrets</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genetic transcription</topic><topic>Humans</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Mustela putorius furo</topic><topic>Nerve Tissue Proteins - biosynthesis</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neurobiology</topic><topic>Neurogenesis</topic><topic>Neurosciences</topic><topic>RNA, Long Noncoding - genetics</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, RNA</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Single-Cell Analysis</topic><topic>Species Specificity</topic><topic>Transcription factors</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Matthew B</creatorcontrib><creatorcontrib>Wang, Peter P</creatorcontrib><creatorcontrib>Atabay, Kutay D</creatorcontrib><creatorcontrib>Murphy, Elisabeth A</creatorcontrib><creatorcontrib>Doan, Ryan N</creatorcontrib><creatorcontrib>Hecht, Jonathan L</creatorcontrib><creatorcontrib>Walsh, Christopher A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Matthew B</au><au>Wang, Peter P</au><au>Atabay, Kutay D</au><au>Murphy, Elisabeth A</au><au>Doan, Ryan N</au><au>Hecht, Jonathan L</au><au>Walsh, Christopher A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>18</volume><issue>5</issue><spage>637</spage><epage>646</epage><pages>637-646</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>The developing human cortex contains diverse populations of neural progenitor cells, including a large proportion of outer radial glia (ORG), a progenitor type that is rare in the mouse. The authors identify a transcriptional signature of ORG characterized by markers of neuronal lineage fate and use single-cell analyses to contrast the heterogeneity of cortical progenitors across human, mouse and ferret.
The human cerebral cortex depends for its normal development and size on a precisely controlled balance between self-renewal and differentiation of diverse neural progenitor cells. Specialized progenitors that are common in humans but virtually absent in rodents, called outer radial glia (ORG), have been suggested to be crucial to the evolutionary expansion of the human cortex. We combined progenitor subtype–specific sorting with transcriptome-wide RNA sequencing to identify genes enriched in human ORG, which included targets of the transcription factor neurogenin and previously uncharacterized, evolutionarily dynamic long noncoding RNAs. Activating the neurogenin pathway in ferret progenitors promoted delamination and outward migration. Finally, single-cell transcriptional profiling in human, ferret and mouse revealed more cells coexpressing proneural neurogenin targets in human than in other species, suggesting greater neuronal lineage commitment and differentiation of self-renewing progenitors. Thus, we find that the abundance of human ORG is paralleled by increased transcriptional heterogeneity of cortical progenitors.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25734491</pmid><doi>10.1038/nn.3980</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2015-05, Vol.18 (5), p.637-646 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5568903 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/337/572 631/378/2571/2579 631/378/2571/2580 631/553/2706 Animal Genetics and Genomics Animals Basic Helix-Loop-Helix Transcription Factors - biosynthesis Basic Helix-Loop-Helix Transcription Factors - genetics Behavioral Sciences Biological Techniques Biomedicine Brain research Cerebral cortex Cerebral Cortex - cytology Cerebral Cortex - embryology Cerebral Cortex - metabolism Ependymoglial Cells - metabolism Ferrets Gene expression Gene Expression Profiling Gene Expression Regulation, Developmental Genetic aspects Genetic research Genetic transcription Humans Mice Molecular Sequence Data Mustela putorius furo Nerve Tissue Proteins - biosynthesis Nerve Tissue Proteins - genetics Neural Stem Cells - metabolism Neurobiology Neurogenesis Neurosciences RNA, Long Noncoding - genetics Sequence Alignment Sequence Analysis, RNA Sequence Homology, Nucleic Acid Single-Cell Analysis Species Specificity Transcription factors Transcription, Genetic |
title | Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20analysis%20reveals%20transcriptional%20heterogeneity%20of%20neural%20progenitors%20in%20human%20cortex&rft.jtitle=Nature%20neuroscience&rft.au=Johnson,%20Matthew%20B&rft.date=2015-05-01&rft.volume=18&rft.issue=5&rft.spage=637&rft.epage=646&rft.pages=637-646&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.3980&rft_dat=%3Cgale_pubme%3EA413709022%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766295444&rft_id=info:pmid/25734491&rft_galeid=A413709022&rfr_iscdi=true |