Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps
The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials f...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-08, Vol.114 (33), p.E6739-E6748 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E6748 |
---|---|
container_issue | 33 |
container_start_page | E6739 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Mei, Yaochuan Diemer, Peter J. Niazi, Muhammad R. Hallani, Rawad K. Jarolimek, Karol Day, Cynthia S. Risko, Chad Anthony, John E. Amassian, Aram Jurchescu, Oana D. |
description | The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms. |
doi_str_mv | 10.1073/pnas.1705164114 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5565442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26487065</jstor_id><sourcerecordid>26487065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-5e5d1c02cab4123c7c3e4e8f8779b57c5a374bf6de7eb0c0043af49d1db1bc723</originalsourceid><addsrcrecordid>eNpdkcGP1CAUxonRuLOjZ08aEi9euvsoUMrFxEx0NdnEi54JBTrD2EKFdpL976XOuqseCOG93_se730IvSJwRUDQ6ynofEUEcNIwQtgTtCEgSdUwCU_RBqAWVctqdoEucz4CgOQtPEcXdSuolJRtUN6lmHM8uYT7FEfc6WCrwf9weI54Prg06mG4w9rM_qRnZ7E56LQv2aRDnmKasQ84pr0O3pyDPs8xZWyX3xK5xHyofLCLKdXlNeUX6Fmvh-xe3t9b9P3Tx2-7z9Xt15svuw-3leEg54o7bomB2uiOkZoaYahjru1bIWTHheGaCtb1jXXCdWAAGNU9k5bYjnRG1HSL3p91p6UbnTUulPaDmpIfdbpTUXv1byb4g9rHk-K84YytAu_uBVL8ubg8q9Fn44ZBBxeXrIisKSG0LWeL3v6HHuOSQhmvUKxhvIzAC3V9psy69eT6h88QUKuhajVUPRpaKt78PcMD_8fBArw-A8d174_5hrUCGk5_AfevqZs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946454125</pqid></control><display><type>article</type><title>Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mei, Yaochuan ; Diemer, Peter J. ; Niazi, Muhammad R. ; Hallani, Rawad K. ; Jarolimek, Karol ; Day, Cynthia S. ; Risko, Chad ; Anthony, John E. ; Amassian, Aram ; Jurchescu, Oana D.</creator><creatorcontrib>Mei, Yaochuan ; Diemer, Peter J. ; Niazi, Muhammad R. ; Hallani, Rawad K. ; Jarolimek, Karol ; Day, Cynthia S. ; Risko, Chad ; Anthony, John E. ; Amassian, Aram ; Jurchescu, Oana D.</creatorcontrib><description>The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1705164114</identifier><identifier>PMID: 28739934</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Carrier mobility ; Carrier transport ; Charge transport ; Current carriers ; Electrical properties ; Electronics industry ; Field effect transistors ; Mobility ; Organic semiconductors ; Physical Sciences ; PNAS Plus ; Scaling ; Semiconductor devices ; Semiconductors ; Temperature dependence ; Thermal expansion ; Transistors ; Trapping</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-08, Vol.114 (33), p.E6739-E6748</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-5e5d1c02cab4123c7c3e4e8f8779b57c5a374bf6de7eb0c0043af49d1db1bc723</citedby><cites>FETCH-LOGICAL-c509t-5e5d1c02cab4123c7c3e4e8f8779b57c5a374bf6de7eb0c0043af49d1db1bc723</cites><orcidid>0000-0003-2204-2909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26487065$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26487065$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27907,27908,53774,53776,58000,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28739934$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mei, Yaochuan</creatorcontrib><creatorcontrib>Diemer, Peter J.</creatorcontrib><creatorcontrib>Niazi, Muhammad R.</creatorcontrib><creatorcontrib>Hallani, Rawad K.</creatorcontrib><creatorcontrib>Jarolimek, Karol</creatorcontrib><creatorcontrib>Day, Cynthia S.</creatorcontrib><creatorcontrib>Risko, Chad</creatorcontrib><creatorcontrib>Anthony, John E.</creatorcontrib><creatorcontrib>Amassian, Aram</creatorcontrib><creatorcontrib>Jurchescu, Oana D.</creatorcontrib><title>Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms.</description><subject>Carrier mobility</subject><subject>Carrier transport</subject><subject>Charge transport</subject><subject>Current carriers</subject><subject>Electrical properties</subject><subject>Electronics industry</subject><subject>Field effect transistors</subject><subject>Mobility</subject><subject>Organic semiconductors</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>Scaling</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Temperature dependence</subject><subject>Thermal expansion</subject><subject>Transistors</subject><subject>Trapping</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkcGP1CAUxonRuLOjZ08aEi9euvsoUMrFxEx0NdnEi54JBTrD2EKFdpL976XOuqseCOG93_se730IvSJwRUDQ6ynofEUEcNIwQtgTtCEgSdUwCU_RBqAWVctqdoEucz4CgOQtPEcXdSuolJRtUN6lmHM8uYT7FEfc6WCrwf9weI54Prg06mG4w9rM_qRnZ7E56LQv2aRDnmKasQ84pr0O3pyDPs8xZWyX3xK5xHyofLCLKdXlNeUX6Fmvh-xe3t9b9P3Tx2-7z9Xt15svuw-3leEg54o7bomB2uiOkZoaYahjru1bIWTHheGaCtb1jXXCdWAAGNU9k5bYjnRG1HSL3p91p6UbnTUulPaDmpIfdbpTUXv1byb4g9rHk-K84YytAu_uBVL8ubg8q9Fn44ZBBxeXrIisKSG0LWeL3v6HHuOSQhmvUKxhvIzAC3V9psy69eT6h88QUKuhajVUPRpaKt78PcMD_8fBArw-A8d174_5hrUCGk5_AfevqZs</recordid><startdate>20170815</startdate><enddate>20170815</enddate><creator>Mei, Yaochuan</creator><creator>Diemer, Peter J.</creator><creator>Niazi, Muhammad R.</creator><creator>Hallani, Rawad K.</creator><creator>Jarolimek, Karol</creator><creator>Day, Cynthia S.</creator><creator>Risko, Chad</creator><creator>Anthony, John E.</creator><creator>Amassian, Aram</creator><creator>Jurchescu, Oana D.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2204-2909</orcidid></search><sort><creationdate>20170815</creationdate><title>Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps</title><author>Mei, Yaochuan ; Diemer, Peter J. ; Niazi, Muhammad R. ; Hallani, Rawad K. ; Jarolimek, Karol ; Day, Cynthia S. ; Risko, Chad ; Anthony, John E. ; Amassian, Aram ; Jurchescu, Oana D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-5e5d1c02cab4123c7c3e4e8f8779b57c5a374bf6de7eb0c0043af49d1db1bc723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carrier mobility</topic><topic>Carrier transport</topic><topic>Charge transport</topic><topic>Current carriers</topic><topic>Electrical properties</topic><topic>Electronics industry</topic><topic>Field effect transistors</topic><topic>Mobility</topic><topic>Organic semiconductors</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>Scaling</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Temperature dependence</topic><topic>Thermal expansion</topic><topic>Transistors</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Yaochuan</creatorcontrib><creatorcontrib>Diemer, Peter J.</creatorcontrib><creatorcontrib>Niazi, Muhammad R.</creatorcontrib><creatorcontrib>Hallani, Rawad K.</creatorcontrib><creatorcontrib>Jarolimek, Karol</creatorcontrib><creatorcontrib>Day, Cynthia S.</creatorcontrib><creatorcontrib>Risko, Chad</creatorcontrib><creatorcontrib>Anthony, John E.</creatorcontrib><creatorcontrib>Amassian, Aram</creatorcontrib><creatorcontrib>Jurchescu, Oana D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Yaochuan</au><au>Diemer, Peter J.</au><au>Niazi, Muhammad R.</au><au>Hallani, Rawad K.</au><au>Jarolimek, Karol</au><au>Day, Cynthia S.</au><au>Risko, Chad</au><au>Anthony, John E.</au><au>Amassian, Aram</au><au>Jurchescu, Oana D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-08-15</date><risdate>2017</risdate><volume>114</volume><issue>33</issue><spage>E6739</spage><epage>E6748</epage><pages>E6739-E6748</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28739934</pmid><doi>10.1073/pnas.1705164114</doi><orcidid>https://orcid.org/0000-0003-2204-2909</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-08, Vol.114 (33), p.E6739-E6748 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5565442 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Carrier mobility Carrier transport Charge transport Current carriers Electrical properties Electronics industry Field effect transistors Mobility Organic semiconductors Physical Sciences PNAS Plus Scaling Semiconductor devices Semiconductors Temperature dependence Thermal expansion Transistors Trapping |
title | Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crossover%20from%20band-like%20to%20thermally%20activated%20charge%20transport%20in%20organic%20transistors%20due%20to%20strain-induced%20traps&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mei,%20Yaochuan&rft.date=2017-08-15&rft.volume=114&rft.issue=33&rft.spage=E6739&rft.epage=E6748&rft.pages=E6739-E6748&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1705164114&rft_dat=%3Cjstor_pubme%3E26487065%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946454125&rft_id=info:pmid/28739934&rft_jstor_id=26487065&rfr_iscdi=true |