Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear
Acquired hearing loss is a worldwide epidemic that affects all ages. It is multifactorial in etiology with poorly characterized molecular mechanisms. Mitochondria are critical components in hearing. Here, we aimed to identify the mechanisms of mitochondria-dependent hearing loss using Fus1 KO mice,...
Gespeichert in:
Veröffentlicht in: | Antioxidants & redox signaling 2017-09, Vol.27 (8), p.489-509 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 509 |
---|---|
container_issue | 8 |
container_start_page | 489 |
container_title | Antioxidants & redox signaling |
container_volume | 27 |
creator | Tan, Winston J T Song, Lei Graham, Morven Schettino, Amy Navaratnam, Dhasakumar Yarbrough, Wendell G Santos-Sacchi, Joseph Ivanova, Alla V |
description | Acquired hearing loss is a worldwide epidemic that affects all ages. It is multifactorial in etiology with poorly characterized molecular mechanisms. Mitochondria are critical components in hearing. Here, we aimed to identify the mechanisms of mitochondria-dependent hearing loss using Fus1 KO mice, our novel model of mitochondrial dysfunction/oxidative stress.
Using auditory brainstem responses (ABRs), we characterized the Fus1 KO mouse as a novel, clinically relevant model of age-related hearing loss (ARHL) of metabolic etiology. We demonstrated early decline of the endocochlear potential (EP) that may occur due to severe mitochondrial and vascular pathologies in the Fus1 KO cochlear stria vascularis. We showed that pathological alterations in antioxidant (AO) and nutrient and energy sensing pathways (mTOR and PTEN/AKT) occur in cochleae of young Fus1 KO mice before major hearing loss. Importantly, short-term AO treatment corrected pathological molecular changes, while longer AO treatment restored EP, improved ABR parameters, restored mitochondrial structure, and delayed the development of hearing loss in the aging mouse.
Currently, no molecular mechanisms linked to metabolic ARHL have been identified. We established pathological and molecular mechanisms that link the disease to mitochondrial dysfunction and oxidative stress.
Since chronic mitochondrial dysfunction is common in many patients, it could lead to developing hearing loss that can be alleviated/rescued by AO treatment. Our study creates a framework for clinical trials and introduces the Fus1 KO model as a powerful platform for developing novel therapeutic strategies to prevent/delay hearing loss associated with mitochondrial dysfunction. Antioxid. Redox Signal. 27, 489-509. |
doi_str_mv | 10.1089/ars.2016.6851 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5564041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1927558552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-a0a86833ff66e5455238ceb3521d6554a0e3855a7a0c563fa4551646eaab0be63</originalsourceid><addsrcrecordid>eNpdkkFv1DAQhS0EomXhyBVZ4tJLFjuOHe8FCVVbWmlpqxbO1mwy2XWV2MV2FvZ38QdxtqUCTvZoPj2_GT9C3nI250wvPkCI85JxNVda8mfkmEtZF3XN1fPpXoqCaVUdkVcx3jHGSs7ZS3JUai6kFvqY_Lr0O-zpje-R-o6mLdIvNvlm610bLPT0OviE1tGzMXKaz0PdJOsd7YIfco0DpDEgPUcI1m3oysdIdxboDW7GHg5olr76adtc7JDepoAZAdfSyzEFiy4diqXDsNnTW3Rx0rmGtP0B-zi9Ovm6cLlPlxBekxcd9BHfPJ4z8u1s-fX0vFhdfb44_bQqGlGrVAADrbQQXacUykrmZegG10KWvFVSVsBQaCmhBtZIJTrICFeVQoA1W6MSM_LxQfd-XA_YNtlngN7cBztA2BsP1vzbcXZrNn5npFQVq3gWOHkUCP77iDGZwcYG-x4c-jEarpUo-UJxltH3_6F3fgwuj2f4oqyl1JP_GSkeqCbkJQfsnsxwZqY4mBwHM8XBTHHI_Lu_J3ii__y_-A1YBbOU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927558552</pqid></control><display><type>article</type><title>Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear</title><source>Alma/SFX Local Collection</source><creator>Tan, Winston J T ; Song, Lei ; Graham, Morven ; Schettino, Amy ; Navaratnam, Dhasakumar ; Yarbrough, Wendell G ; Santos-Sacchi, Joseph ; Ivanova, Alla V</creator><creatorcontrib>Tan, Winston J T ; Song, Lei ; Graham, Morven ; Schettino, Amy ; Navaratnam, Dhasakumar ; Yarbrough, Wendell G ; Santos-Sacchi, Joseph ; Ivanova, Alla V</creatorcontrib><description>Acquired hearing loss is a worldwide epidemic that affects all ages. It is multifactorial in etiology with poorly characterized molecular mechanisms. Mitochondria are critical components in hearing. Here, we aimed to identify the mechanisms of mitochondria-dependent hearing loss using Fus1 KO mice, our novel model of mitochondrial dysfunction/oxidative stress.
Using auditory brainstem responses (ABRs), we characterized the Fus1 KO mouse as a novel, clinically relevant model of age-related hearing loss (ARHL) of metabolic etiology. We demonstrated early decline of the endocochlear potential (EP) that may occur due to severe mitochondrial and vascular pathologies in the Fus1 KO cochlear stria vascularis. We showed that pathological alterations in antioxidant (AO) and nutrient and energy sensing pathways (mTOR and PTEN/AKT) occur in cochleae of young Fus1 KO mice before major hearing loss. Importantly, short-term AO treatment corrected pathological molecular changes, while longer AO treatment restored EP, improved ABR parameters, restored mitochondrial structure, and delayed the development of hearing loss in the aging mouse.
Currently, no molecular mechanisms linked to metabolic ARHL have been identified. We established pathological and molecular mechanisms that link the disease to mitochondrial dysfunction and oxidative stress.
Since chronic mitochondrial dysfunction is common in many patients, it could lead to developing hearing loss that can be alleviated/rescued by AO treatment. Our study creates a framework for clinical trials and introduces the Fus1 KO model as a powerful platform for developing novel therapeutic strategies to prevent/delay hearing loss associated with mitochondrial dysfunction. Antioxid. Redox Signal. 27, 489-509.</description><identifier>ISSN: 1523-0864</identifier><identifier>EISSN: 1557-7716</identifier><identifier>DOI: 10.1089/ars.2016.6851</identifier><identifier>PMID: 28135838</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Age ; Aging ; AKT protein ; Brain stem ; Clinical trials ; Cochlea ; Critical components ; Ear ; Energy ; Epidemics ; Etiology ; Hearing loss ; Hearing protection ; Inner ear ; Innovations ; Medical research ; Metabolism ; Mice ; Mitochondria ; Molecular modelling ; Nutrient loss ; Nutrients ; Original Research Communications ; Oxidative stress ; PTEN protein ; Rodents ; Stria vascularis ; TOR protein</subject><ispartof>Antioxidants & redox signaling, 2017-09, Vol.27 (8), p.489-509</ispartof><rights>(©) Copyright 2017, Mary Ann Liebert, Inc.</rights><rights>Copyright 2017, Mary Ann Liebert, Inc. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-a0a86833ff66e5455238ceb3521d6554a0e3855a7a0c563fa4551646eaab0be63</citedby><cites>FETCH-LOGICAL-c376t-a0a86833ff66e5455238ceb3521d6554a0e3855a7a0c563fa4551646eaab0be63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28135838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Winston J T</creatorcontrib><creatorcontrib>Song, Lei</creatorcontrib><creatorcontrib>Graham, Morven</creatorcontrib><creatorcontrib>Schettino, Amy</creatorcontrib><creatorcontrib>Navaratnam, Dhasakumar</creatorcontrib><creatorcontrib>Yarbrough, Wendell G</creatorcontrib><creatorcontrib>Santos-Sacchi, Joseph</creatorcontrib><creatorcontrib>Ivanova, Alla V</creatorcontrib><title>Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear</title><title>Antioxidants & redox signaling</title><addtitle>Antioxid Redox Signal</addtitle><description>Acquired hearing loss is a worldwide epidemic that affects all ages. It is multifactorial in etiology with poorly characterized molecular mechanisms. Mitochondria are critical components in hearing. Here, we aimed to identify the mechanisms of mitochondria-dependent hearing loss using Fus1 KO mice, our novel model of mitochondrial dysfunction/oxidative stress.
Using auditory brainstem responses (ABRs), we characterized the Fus1 KO mouse as a novel, clinically relevant model of age-related hearing loss (ARHL) of metabolic etiology. We demonstrated early decline of the endocochlear potential (EP) that may occur due to severe mitochondrial and vascular pathologies in the Fus1 KO cochlear stria vascularis. We showed that pathological alterations in antioxidant (AO) and nutrient and energy sensing pathways (mTOR and PTEN/AKT) occur in cochleae of young Fus1 KO mice before major hearing loss. Importantly, short-term AO treatment corrected pathological molecular changes, while longer AO treatment restored EP, improved ABR parameters, restored mitochondrial structure, and delayed the development of hearing loss in the aging mouse.
Currently, no molecular mechanisms linked to metabolic ARHL have been identified. We established pathological and molecular mechanisms that link the disease to mitochondrial dysfunction and oxidative stress.
Since chronic mitochondrial dysfunction is common in many patients, it could lead to developing hearing loss that can be alleviated/rescued by AO treatment. Our study creates a framework for clinical trials and introduces the Fus1 KO model as a powerful platform for developing novel therapeutic strategies to prevent/delay hearing loss associated with mitochondrial dysfunction. Antioxid. Redox Signal. 27, 489-509.</description><subject>Age</subject><subject>Aging</subject><subject>AKT protein</subject><subject>Brain stem</subject><subject>Clinical trials</subject><subject>Cochlea</subject><subject>Critical components</subject><subject>Ear</subject><subject>Energy</subject><subject>Epidemics</subject><subject>Etiology</subject><subject>Hearing loss</subject><subject>Hearing protection</subject><subject>Inner ear</subject><subject>Innovations</subject><subject>Medical research</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Molecular modelling</subject><subject>Nutrient loss</subject><subject>Nutrients</subject><subject>Original Research Communications</subject><subject>Oxidative stress</subject><subject>PTEN protein</subject><subject>Rodents</subject><subject>Stria vascularis</subject><subject>TOR protein</subject><issn>1523-0864</issn><issn>1557-7716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkkFv1DAQhS0EomXhyBVZ4tJLFjuOHe8FCVVbWmlpqxbO1mwy2XWV2MV2FvZ38QdxtqUCTvZoPj2_GT9C3nI250wvPkCI85JxNVda8mfkmEtZF3XN1fPpXoqCaVUdkVcx3jHGSs7ZS3JUai6kFvqY_Lr0O-zpje-R-o6mLdIvNvlm610bLPT0OviE1tGzMXKaz0PdJOsd7YIfco0DpDEgPUcI1m3oysdIdxboDW7GHg5olr76adtc7JDepoAZAdfSyzEFiy4diqXDsNnTW3Rx0rmGtP0B-zi9Ovm6cLlPlxBekxcd9BHfPJ4z8u1s-fX0vFhdfb44_bQqGlGrVAADrbQQXacUykrmZegG10KWvFVSVsBQaCmhBtZIJTrICFeVQoA1W6MSM_LxQfd-XA_YNtlngN7cBztA2BsP1vzbcXZrNn5npFQVq3gWOHkUCP77iDGZwcYG-x4c-jEarpUo-UJxltH3_6F3fgwuj2f4oqyl1JP_GSkeqCbkJQfsnsxwZqY4mBwHM8XBTHHI_Lu_J3ii__y_-A1YBbOU</recordid><startdate>20170910</startdate><enddate>20170910</enddate><creator>Tan, Winston J T</creator><creator>Song, Lei</creator><creator>Graham, Morven</creator><creator>Schettino, Amy</creator><creator>Navaratnam, Dhasakumar</creator><creator>Yarbrough, Wendell G</creator><creator>Santos-Sacchi, Joseph</creator><creator>Ivanova, Alla V</creator><general>Mary Ann Liebert, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170910</creationdate><title>Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear</title><author>Tan, Winston J T ; Song, Lei ; Graham, Morven ; Schettino, Amy ; Navaratnam, Dhasakumar ; Yarbrough, Wendell G ; Santos-Sacchi, Joseph ; Ivanova, Alla V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-a0a86833ff66e5455238ceb3521d6554a0e3855a7a0c563fa4551646eaab0be63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Age</topic><topic>Aging</topic><topic>AKT protein</topic><topic>Brain stem</topic><topic>Clinical trials</topic><topic>Cochlea</topic><topic>Critical components</topic><topic>Ear</topic><topic>Energy</topic><topic>Epidemics</topic><topic>Etiology</topic><topic>Hearing loss</topic><topic>Hearing protection</topic><topic>Inner ear</topic><topic>Innovations</topic><topic>Medical research</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Molecular modelling</topic><topic>Nutrient loss</topic><topic>Nutrients</topic><topic>Original Research Communications</topic><topic>Oxidative stress</topic><topic>PTEN protein</topic><topic>Rodents</topic><topic>Stria vascularis</topic><topic>TOR protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Winston J T</creatorcontrib><creatorcontrib>Song, Lei</creatorcontrib><creatorcontrib>Graham, Morven</creatorcontrib><creatorcontrib>Schettino, Amy</creatorcontrib><creatorcontrib>Navaratnam, Dhasakumar</creatorcontrib><creatorcontrib>Yarbrough, Wendell G</creatorcontrib><creatorcontrib>Santos-Sacchi, Joseph</creatorcontrib><creatorcontrib>Ivanova, Alla V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Antioxidants & redox signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Winston J T</au><au>Song, Lei</au><au>Graham, Morven</au><au>Schettino, Amy</au><au>Navaratnam, Dhasakumar</au><au>Yarbrough, Wendell G</au><au>Santos-Sacchi, Joseph</au><au>Ivanova, Alla V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear</atitle><jtitle>Antioxidants & redox signaling</jtitle><addtitle>Antioxid Redox Signal</addtitle><date>2017-09-10</date><risdate>2017</risdate><volume>27</volume><issue>8</issue><spage>489</spage><epage>509</epage><pages>489-509</pages><issn>1523-0864</issn><eissn>1557-7716</eissn><abstract>Acquired hearing loss is a worldwide epidemic that affects all ages. It is multifactorial in etiology with poorly characterized molecular mechanisms. Mitochondria are critical components in hearing. Here, we aimed to identify the mechanisms of mitochondria-dependent hearing loss using Fus1 KO mice, our novel model of mitochondrial dysfunction/oxidative stress.
Using auditory brainstem responses (ABRs), we characterized the Fus1 KO mouse as a novel, clinically relevant model of age-related hearing loss (ARHL) of metabolic etiology. We demonstrated early decline of the endocochlear potential (EP) that may occur due to severe mitochondrial and vascular pathologies in the Fus1 KO cochlear stria vascularis. We showed that pathological alterations in antioxidant (AO) and nutrient and energy sensing pathways (mTOR and PTEN/AKT) occur in cochleae of young Fus1 KO mice before major hearing loss. Importantly, short-term AO treatment corrected pathological molecular changes, while longer AO treatment restored EP, improved ABR parameters, restored mitochondrial structure, and delayed the development of hearing loss in the aging mouse.
Currently, no molecular mechanisms linked to metabolic ARHL have been identified. We established pathological and molecular mechanisms that link the disease to mitochondrial dysfunction and oxidative stress.
Since chronic mitochondrial dysfunction is common in many patients, it could lead to developing hearing loss that can be alleviated/rescued by AO treatment. Our study creates a framework for clinical trials and introduces the Fus1 KO model as a powerful platform for developing novel therapeutic strategies to prevent/delay hearing loss associated with mitochondrial dysfunction. Antioxid. Redox Signal. 27, 489-509.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>28135838</pmid><doi>10.1089/ars.2016.6851</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1523-0864 |
ispartof | Antioxidants & redox signaling, 2017-09, Vol.27 (8), p.489-509 |
issn | 1523-0864 1557-7716 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5564041 |
source | Alma/SFX Local Collection |
subjects | Age Aging AKT protein Brain stem Clinical trials Cochlea Critical components Ear Energy Epidemics Etiology Hearing loss Hearing protection Inner ear Innovations Medical research Metabolism Mice Mitochondria Molecular modelling Nutrient loss Nutrients Original Research Communications Oxidative stress PTEN protein Rodents Stria vascularis TOR protein |
title | Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Role%20of%20the%20Mitochondrial%20Protein%20Fus1%20in%20Protection%20from%20Premature%20Hearing%20Loss%20via%20Regulation%20of%20Oxidative%20Stress%20and%20Nutrient%20and%20Energy%20Sensing%20Pathways%20in%20the%20Inner%20Ear&rft.jtitle=Antioxidants%20&%20redox%20signaling&rft.au=Tan,%20Winston%20J%20T&rft.date=2017-09-10&rft.volume=27&rft.issue=8&rft.spage=489&rft.epage=509&rft.pages=489-509&rft.issn=1523-0864&rft.eissn=1557-7716&rft_id=info:doi/10.1089/ars.2016.6851&rft_dat=%3Cproquest_pubme%3E1927558552%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927558552&rft_id=info:pmid/28135838&rfr_iscdi=true |