Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear

Acquired hearing loss is a worldwide epidemic that affects all ages. It is multifactorial in etiology with poorly characterized molecular mechanisms. Mitochondria are critical components in hearing. Here, we aimed to identify the mechanisms of mitochondria-dependent hearing loss using Fus1 KO mice,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants & redox signaling 2017-09, Vol.27 (8), p.489-509
Hauptverfasser: Tan, Winston J T, Song, Lei, Graham, Morven, Schettino, Amy, Navaratnam, Dhasakumar, Yarbrough, Wendell G, Santos-Sacchi, Joseph, Ivanova, Alla V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 509
container_issue 8
container_start_page 489
container_title Antioxidants & redox signaling
container_volume 27
creator Tan, Winston J T
Song, Lei
Graham, Morven
Schettino, Amy
Navaratnam, Dhasakumar
Yarbrough, Wendell G
Santos-Sacchi, Joseph
Ivanova, Alla V
description Acquired hearing loss is a worldwide epidemic that affects all ages. It is multifactorial in etiology with poorly characterized molecular mechanisms. Mitochondria are critical components in hearing. Here, we aimed to identify the mechanisms of mitochondria-dependent hearing loss using Fus1 KO mice, our novel model of mitochondrial dysfunction/oxidative stress. Using auditory brainstem responses (ABRs), we characterized the Fus1 KO mouse as a novel, clinically relevant model of age-related hearing loss (ARHL) of metabolic etiology. We demonstrated early decline of the endocochlear potential (EP) that may occur due to severe mitochondrial and vascular pathologies in the Fus1 KO cochlear stria vascularis. We showed that pathological alterations in antioxidant (AO) and nutrient and energy sensing pathways (mTOR and PTEN/AKT) occur in cochleae of young Fus1 KO mice before major hearing loss. Importantly, short-term AO treatment corrected pathological molecular changes, while longer AO treatment restored EP, improved ABR parameters, restored mitochondrial structure, and delayed the development of hearing loss in the aging mouse. Currently, no molecular mechanisms linked to metabolic ARHL have been identified. We established pathological and molecular mechanisms that link the disease to mitochondrial dysfunction and oxidative stress. Since chronic mitochondrial dysfunction is common in many patients, it could lead to developing hearing loss that can be alleviated/rescued by AO treatment. Our study creates a framework for clinical trials and introduces the Fus1 KO model as a powerful platform for developing novel therapeutic strategies to prevent/delay hearing loss associated with mitochondrial dysfunction. Antioxid. Redox Signal. 27, 489-509.
doi_str_mv 10.1089/ars.2016.6851
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5564041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1927558552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-a0a86833ff66e5455238ceb3521d6554a0e3855a7a0c563fa4551646eaab0be63</originalsourceid><addsrcrecordid>eNpdkkFv1DAQhS0EomXhyBVZ4tJLFjuOHe8FCVVbWmlpqxbO1mwy2XWV2MV2FvZ38QdxtqUCTvZoPj2_GT9C3nI250wvPkCI85JxNVda8mfkmEtZF3XN1fPpXoqCaVUdkVcx3jHGSs7ZS3JUai6kFvqY_Lr0O-zpje-R-o6mLdIvNvlm610bLPT0OviE1tGzMXKaz0PdJOsd7YIfco0DpDEgPUcI1m3oysdIdxboDW7GHg5olr76adtc7JDepoAZAdfSyzEFiy4diqXDsNnTW3Rx0rmGtP0B-zi9Ovm6cLlPlxBekxcd9BHfPJ4z8u1s-fX0vFhdfb44_bQqGlGrVAADrbQQXacUykrmZegG10KWvFVSVsBQaCmhBtZIJTrICFeVQoA1W6MSM_LxQfd-XA_YNtlngN7cBztA2BsP1vzbcXZrNn5npFQVq3gWOHkUCP77iDGZwcYG-x4c-jEarpUo-UJxltH3_6F3fgwuj2f4oqyl1JP_GSkeqCbkJQfsnsxwZqY4mBwHM8XBTHHI_Lu_J3ii__y_-A1YBbOU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927558552</pqid></control><display><type>article</type><title>Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear</title><source>Alma/SFX Local Collection</source><creator>Tan, Winston J T ; Song, Lei ; Graham, Morven ; Schettino, Amy ; Navaratnam, Dhasakumar ; Yarbrough, Wendell G ; Santos-Sacchi, Joseph ; Ivanova, Alla V</creator><creatorcontrib>Tan, Winston J T ; Song, Lei ; Graham, Morven ; Schettino, Amy ; Navaratnam, Dhasakumar ; Yarbrough, Wendell G ; Santos-Sacchi, Joseph ; Ivanova, Alla V</creatorcontrib><description>Acquired hearing loss is a worldwide epidemic that affects all ages. It is multifactorial in etiology with poorly characterized molecular mechanisms. Mitochondria are critical components in hearing. Here, we aimed to identify the mechanisms of mitochondria-dependent hearing loss using Fus1 KO mice, our novel model of mitochondrial dysfunction/oxidative stress. Using auditory brainstem responses (ABRs), we characterized the Fus1 KO mouse as a novel, clinically relevant model of age-related hearing loss (ARHL) of metabolic etiology. We demonstrated early decline of the endocochlear potential (EP) that may occur due to severe mitochondrial and vascular pathologies in the Fus1 KO cochlear stria vascularis. We showed that pathological alterations in antioxidant (AO) and nutrient and energy sensing pathways (mTOR and PTEN/AKT) occur in cochleae of young Fus1 KO mice before major hearing loss. Importantly, short-term AO treatment corrected pathological molecular changes, while longer AO treatment restored EP, improved ABR parameters, restored mitochondrial structure, and delayed the development of hearing loss in the aging mouse. Currently, no molecular mechanisms linked to metabolic ARHL have been identified. We established pathological and molecular mechanisms that link the disease to mitochondrial dysfunction and oxidative stress. Since chronic mitochondrial dysfunction is common in many patients, it could lead to developing hearing loss that can be alleviated/rescued by AO treatment. Our study creates a framework for clinical trials and introduces the Fus1 KO model as a powerful platform for developing novel therapeutic strategies to prevent/delay hearing loss associated with mitochondrial dysfunction. Antioxid. Redox Signal. 27, 489-509.</description><identifier>ISSN: 1523-0864</identifier><identifier>EISSN: 1557-7716</identifier><identifier>DOI: 10.1089/ars.2016.6851</identifier><identifier>PMID: 28135838</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Age ; Aging ; AKT protein ; Brain stem ; Clinical trials ; Cochlea ; Critical components ; Ear ; Energy ; Epidemics ; Etiology ; Hearing loss ; Hearing protection ; Inner ear ; Innovations ; Medical research ; Metabolism ; Mice ; Mitochondria ; Molecular modelling ; Nutrient loss ; Nutrients ; Original Research Communications ; Oxidative stress ; PTEN protein ; Rodents ; Stria vascularis ; TOR protein</subject><ispartof>Antioxidants &amp; redox signaling, 2017-09, Vol.27 (8), p.489-509</ispartof><rights>(©) Copyright 2017, Mary Ann Liebert, Inc.</rights><rights>Copyright 2017, Mary Ann Liebert, Inc. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-a0a86833ff66e5455238ceb3521d6554a0e3855a7a0c563fa4551646eaab0be63</citedby><cites>FETCH-LOGICAL-c376t-a0a86833ff66e5455238ceb3521d6554a0e3855a7a0c563fa4551646eaab0be63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28135838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Winston J T</creatorcontrib><creatorcontrib>Song, Lei</creatorcontrib><creatorcontrib>Graham, Morven</creatorcontrib><creatorcontrib>Schettino, Amy</creatorcontrib><creatorcontrib>Navaratnam, Dhasakumar</creatorcontrib><creatorcontrib>Yarbrough, Wendell G</creatorcontrib><creatorcontrib>Santos-Sacchi, Joseph</creatorcontrib><creatorcontrib>Ivanova, Alla V</creatorcontrib><title>Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear</title><title>Antioxidants &amp; redox signaling</title><addtitle>Antioxid Redox Signal</addtitle><description>Acquired hearing loss is a worldwide epidemic that affects all ages. It is multifactorial in etiology with poorly characterized molecular mechanisms. Mitochondria are critical components in hearing. Here, we aimed to identify the mechanisms of mitochondria-dependent hearing loss using Fus1 KO mice, our novel model of mitochondrial dysfunction/oxidative stress. Using auditory brainstem responses (ABRs), we characterized the Fus1 KO mouse as a novel, clinically relevant model of age-related hearing loss (ARHL) of metabolic etiology. We demonstrated early decline of the endocochlear potential (EP) that may occur due to severe mitochondrial and vascular pathologies in the Fus1 KO cochlear stria vascularis. We showed that pathological alterations in antioxidant (AO) and nutrient and energy sensing pathways (mTOR and PTEN/AKT) occur in cochleae of young Fus1 KO mice before major hearing loss. Importantly, short-term AO treatment corrected pathological molecular changes, while longer AO treatment restored EP, improved ABR parameters, restored mitochondrial structure, and delayed the development of hearing loss in the aging mouse. Currently, no molecular mechanisms linked to metabolic ARHL have been identified. We established pathological and molecular mechanisms that link the disease to mitochondrial dysfunction and oxidative stress. Since chronic mitochondrial dysfunction is common in many patients, it could lead to developing hearing loss that can be alleviated/rescued by AO treatment. Our study creates a framework for clinical trials and introduces the Fus1 KO model as a powerful platform for developing novel therapeutic strategies to prevent/delay hearing loss associated with mitochondrial dysfunction. Antioxid. Redox Signal. 27, 489-509.</description><subject>Age</subject><subject>Aging</subject><subject>AKT protein</subject><subject>Brain stem</subject><subject>Clinical trials</subject><subject>Cochlea</subject><subject>Critical components</subject><subject>Ear</subject><subject>Energy</subject><subject>Epidemics</subject><subject>Etiology</subject><subject>Hearing loss</subject><subject>Hearing protection</subject><subject>Inner ear</subject><subject>Innovations</subject><subject>Medical research</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Molecular modelling</subject><subject>Nutrient loss</subject><subject>Nutrients</subject><subject>Original Research Communications</subject><subject>Oxidative stress</subject><subject>PTEN protein</subject><subject>Rodents</subject><subject>Stria vascularis</subject><subject>TOR protein</subject><issn>1523-0864</issn><issn>1557-7716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkkFv1DAQhS0EomXhyBVZ4tJLFjuOHe8FCVVbWmlpqxbO1mwy2XWV2MV2FvZ38QdxtqUCTvZoPj2_GT9C3nI250wvPkCI85JxNVda8mfkmEtZF3XN1fPpXoqCaVUdkVcx3jHGSs7ZS3JUai6kFvqY_Lr0O-zpje-R-o6mLdIvNvlm610bLPT0OviE1tGzMXKaz0PdJOsd7YIfco0DpDEgPUcI1m3oysdIdxboDW7GHg5olr76adtc7JDepoAZAdfSyzEFiy4diqXDsNnTW3Rx0rmGtP0B-zi9Ovm6cLlPlxBekxcd9BHfPJ4z8u1s-fX0vFhdfb44_bQqGlGrVAADrbQQXacUykrmZegG10KWvFVSVsBQaCmhBtZIJTrICFeVQoA1W6MSM_LxQfd-XA_YNtlngN7cBztA2BsP1vzbcXZrNn5npFQVq3gWOHkUCP77iDGZwcYG-x4c-jEarpUo-UJxltH3_6F3fgwuj2f4oqyl1JP_GSkeqCbkJQfsnsxwZqY4mBwHM8XBTHHI_Lu_J3ii__y_-A1YBbOU</recordid><startdate>20170910</startdate><enddate>20170910</enddate><creator>Tan, Winston J T</creator><creator>Song, Lei</creator><creator>Graham, Morven</creator><creator>Schettino, Amy</creator><creator>Navaratnam, Dhasakumar</creator><creator>Yarbrough, Wendell G</creator><creator>Santos-Sacchi, Joseph</creator><creator>Ivanova, Alla V</creator><general>Mary Ann Liebert, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170910</creationdate><title>Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear</title><author>Tan, Winston J T ; Song, Lei ; Graham, Morven ; Schettino, Amy ; Navaratnam, Dhasakumar ; Yarbrough, Wendell G ; Santos-Sacchi, Joseph ; Ivanova, Alla V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-a0a86833ff66e5455238ceb3521d6554a0e3855a7a0c563fa4551646eaab0be63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Age</topic><topic>Aging</topic><topic>AKT protein</topic><topic>Brain stem</topic><topic>Clinical trials</topic><topic>Cochlea</topic><topic>Critical components</topic><topic>Ear</topic><topic>Energy</topic><topic>Epidemics</topic><topic>Etiology</topic><topic>Hearing loss</topic><topic>Hearing protection</topic><topic>Inner ear</topic><topic>Innovations</topic><topic>Medical research</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Molecular modelling</topic><topic>Nutrient loss</topic><topic>Nutrients</topic><topic>Original Research Communications</topic><topic>Oxidative stress</topic><topic>PTEN protein</topic><topic>Rodents</topic><topic>Stria vascularis</topic><topic>TOR protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Winston J T</creatorcontrib><creatorcontrib>Song, Lei</creatorcontrib><creatorcontrib>Graham, Morven</creatorcontrib><creatorcontrib>Schettino, Amy</creatorcontrib><creatorcontrib>Navaratnam, Dhasakumar</creatorcontrib><creatorcontrib>Yarbrough, Wendell G</creatorcontrib><creatorcontrib>Santos-Sacchi, Joseph</creatorcontrib><creatorcontrib>Ivanova, Alla V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Antioxidants &amp; redox signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Winston J T</au><au>Song, Lei</au><au>Graham, Morven</au><au>Schettino, Amy</au><au>Navaratnam, Dhasakumar</au><au>Yarbrough, Wendell G</au><au>Santos-Sacchi, Joseph</au><au>Ivanova, Alla V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear</atitle><jtitle>Antioxidants &amp; redox signaling</jtitle><addtitle>Antioxid Redox Signal</addtitle><date>2017-09-10</date><risdate>2017</risdate><volume>27</volume><issue>8</issue><spage>489</spage><epage>509</epage><pages>489-509</pages><issn>1523-0864</issn><eissn>1557-7716</eissn><abstract>Acquired hearing loss is a worldwide epidemic that affects all ages. It is multifactorial in etiology with poorly characterized molecular mechanisms. Mitochondria are critical components in hearing. Here, we aimed to identify the mechanisms of mitochondria-dependent hearing loss using Fus1 KO mice, our novel model of mitochondrial dysfunction/oxidative stress. Using auditory brainstem responses (ABRs), we characterized the Fus1 KO mouse as a novel, clinically relevant model of age-related hearing loss (ARHL) of metabolic etiology. We demonstrated early decline of the endocochlear potential (EP) that may occur due to severe mitochondrial and vascular pathologies in the Fus1 KO cochlear stria vascularis. We showed that pathological alterations in antioxidant (AO) and nutrient and energy sensing pathways (mTOR and PTEN/AKT) occur in cochleae of young Fus1 KO mice before major hearing loss. Importantly, short-term AO treatment corrected pathological molecular changes, while longer AO treatment restored EP, improved ABR parameters, restored mitochondrial structure, and delayed the development of hearing loss in the aging mouse. Currently, no molecular mechanisms linked to metabolic ARHL have been identified. We established pathological and molecular mechanisms that link the disease to mitochondrial dysfunction and oxidative stress. Since chronic mitochondrial dysfunction is common in many patients, it could lead to developing hearing loss that can be alleviated/rescued by AO treatment. Our study creates a framework for clinical trials and introduces the Fus1 KO model as a powerful platform for developing novel therapeutic strategies to prevent/delay hearing loss associated with mitochondrial dysfunction. Antioxid. Redox Signal. 27, 489-509.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>28135838</pmid><doi>10.1089/ars.2016.6851</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1523-0864
ispartof Antioxidants & redox signaling, 2017-09, Vol.27 (8), p.489-509
issn 1523-0864
1557-7716
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5564041
source Alma/SFX Local Collection
subjects Age
Aging
AKT protein
Brain stem
Clinical trials
Cochlea
Critical components
Ear
Energy
Epidemics
Etiology
Hearing loss
Hearing protection
Inner ear
Innovations
Medical research
Metabolism
Mice
Mitochondria
Molecular modelling
Nutrient loss
Nutrients
Original Research Communications
Oxidative stress
PTEN protein
Rodents
Stria vascularis
TOR protein
title Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Role%20of%20the%20Mitochondrial%20Protein%20Fus1%20in%20Protection%20from%20Premature%20Hearing%20Loss%20via%20Regulation%20of%20Oxidative%20Stress%20and%20Nutrient%20and%20Energy%20Sensing%20Pathways%20in%20the%20Inner%20Ear&rft.jtitle=Antioxidants%20&%20redox%20signaling&rft.au=Tan,%20Winston%20J%20T&rft.date=2017-09-10&rft.volume=27&rft.issue=8&rft.spage=489&rft.epage=509&rft.pages=489-509&rft.issn=1523-0864&rft.eissn=1557-7716&rft_id=info:doi/10.1089/ars.2016.6851&rft_dat=%3Cproquest_pubme%3E1927558552%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927558552&rft_id=info:pmid/28135838&rfr_iscdi=true