Relationship between pore-size distribution and flexibility of adsorbent materials: statistical mechanics and future material characterization techniques

Measurement of the pore-size distribution (PSD) via gas adsorption and the so-called “kernel method” is a widely used characterization technique for rigid adsorbents. Yet, standard techniques and analytical equipment are not appropriate to characterize the emerging class of flexible adsorbents that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Adsorption : journal of the International Adsorption Society 2017-05, Vol.23 (4), p.593-602
Hauptverfasser: Siderius, Daniel. W., Mahynski, Nathan. A., Shen, Vincent K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 602
container_issue 4
container_start_page 593
container_title Adsorption : journal of the International Adsorption Society
container_volume 23
creator Siderius, Daniel. W.
Mahynski, Nathan. A.
Shen, Vincent K.
description Measurement of the pore-size distribution (PSD) via gas adsorption and the so-called “kernel method” is a widely used characterization technique for rigid adsorbents. Yet, standard techniques and analytical equipment are not appropriate to characterize the emerging class of flexible adsorbents that deform in response to the stress imparted by an adsorbate gas, as the PSD is a characteristic of the material that varies with the gas pressure and any other external stresses. Here, we derive the PSD for a flexible adsorbent using statistical mechanics in the osmotic ensemble to draw analogy to the kernel method for rigid materials. The resultant PSD is a function of the ensemble constraints including all imposed stresses and, most importantly, the deformation free energy of the adsorbent material. Consequently, a pressure-dependent PSD is a descriptor of the deformation characteristics of an adsorbent and may be the basis of future material characterization techniques. We discuss how, given a technique for resolving pressure-dependent PSDs, the present statistical mechanical theory could enable a new generation of analytical tools that measure and characterize certain intrinsic material properties of flexible adsorbents via otherwise simple adsorption experiments.
doi_str_mv 10.1007/s10450-017-9879-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5562161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1892388182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-72d76df8a67216489912ee173c36898f24f2b12899c50c943b2afd63c444cfd3</originalsourceid><addsrcrecordid>eNp1kc2KFTEQhYMoznX0AdxIwI2baJLuzo8LQQb_YECQ2Yd0unpuhu7kmqTVmTfxbU3b42UUXIXK-epUFQehp4y-ZJTKV5nRtqOEMkm0kprQe2jHOsmJkp28j3ZUc006QeUJepTzFaVUC9k8RCdcKS6VFjv08wtMtvgY8t4fcA_lO0DAh5iAZH8DePC5JN8vK4JtGPA4wQ_f-8mXaxxHbIccUw-h4NkWSN5O-TXOpVrm4p2d8Axub4N3eeteypLgyOKqJevW4ub3FrhUPPivC-TH6MFY3eDJ7XuKLt6_uzj7SM4_f_h09vacuI7KQiQfpBhGZYXkTLRKa8YBmGxcI5RWI29H3jNe_yvvdNv03I6DaFzbtm4cmlP0ZrM9LP0Mg6unJDuZQ_KzTdcmWm_-VoLfm8v4zXSdqANZNXhxa5Diuncxs88OpskGiEs2TDeMtxXUFX3-D3oVlxTqdYYpzRulmOKVYhvlUsw5wXhchlGz5m623E3N3ay5G1p7nt294tjxJ-gK8A3IVQqXkO6M_q_rL3JCvd4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1892388182</pqid></control><display><type>article</type><title>Relationship between pore-size distribution and flexibility of adsorbent materials: statistical mechanics and future material characterization techniques</title><source>Springer Nature - Complete Springer Journals</source><creator>Siderius, Daniel. W. ; Mahynski, Nathan. A. ; Shen, Vincent K.</creator><creatorcontrib>Siderius, Daniel. W. ; Mahynski, Nathan. A. ; Shen, Vincent K.</creatorcontrib><description>Measurement of the pore-size distribution (PSD) via gas adsorption and the so-called “kernel method” is a widely used characterization technique for rigid adsorbents. Yet, standard techniques and analytical equipment are not appropriate to characterize the emerging class of flexible adsorbents that deform in response to the stress imparted by an adsorbate gas, as the PSD is a characteristic of the material that varies with the gas pressure and any other external stresses. Here, we derive the PSD for a flexible adsorbent using statistical mechanics in the osmotic ensemble to draw analogy to the kernel method for rigid materials. The resultant PSD is a function of the ensemble constraints including all imposed stresses and, most importantly, the deformation free energy of the adsorbent material. Consequently, a pressure-dependent PSD is a descriptor of the deformation characteristics of an adsorbent and may be the basis of future material characterization techniques. We discuss how, given a technique for resolving pressure-dependent PSDs, the present statistical mechanical theory could enable a new generation of analytical tools that measure and characterize certain intrinsic material properties of flexible adsorbents via otherwise simple adsorption experiments.</description><identifier>ISSN: 0929-5607</identifier><identifier>EISSN: 1572-8757</identifier><identifier>DOI: 10.1007/s10450-017-9879-0</identifier><identifier>PMID: 28827896</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adsorbents ; Adsorption ; Chemistry ; Chemistry and Materials Science ; Engineering Thermodynamics ; External pressure ; Free energy ; Gas pressure ; Heat and Mass Transfer ; Industrial Chemistry/Chemical Engineering ; Material properties ; Pressure dependence ; Size distribution ; Statistical mechanics ; Stresses ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Adsorption : journal of the International Adsorption Society, 2017-05, Vol.23 (4), p.593-602</ispartof><rights>Springer Science+Business Media New York (outside the USA) 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-72d76df8a67216489912ee173c36898f24f2b12899c50c943b2afd63c444cfd3</citedby><cites>FETCH-LOGICAL-c507t-72d76df8a67216489912ee173c36898f24f2b12899c50c943b2afd63c444cfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10450-017-9879-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10450-017-9879-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28827896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siderius, Daniel. W.</creatorcontrib><creatorcontrib>Mahynski, Nathan. A.</creatorcontrib><creatorcontrib>Shen, Vincent K.</creatorcontrib><title>Relationship between pore-size distribution and flexibility of adsorbent materials: statistical mechanics and future material characterization techniques</title><title>Adsorption : journal of the International Adsorption Society</title><addtitle>Adsorption</addtitle><addtitle>Adsorption (Boston)</addtitle><description>Measurement of the pore-size distribution (PSD) via gas adsorption and the so-called “kernel method” is a widely used characterization technique for rigid adsorbents. Yet, standard techniques and analytical equipment are not appropriate to characterize the emerging class of flexible adsorbents that deform in response to the stress imparted by an adsorbate gas, as the PSD is a characteristic of the material that varies with the gas pressure and any other external stresses. Here, we derive the PSD for a flexible adsorbent using statistical mechanics in the osmotic ensemble to draw analogy to the kernel method for rigid materials. The resultant PSD is a function of the ensemble constraints including all imposed stresses and, most importantly, the deformation free energy of the adsorbent material. Consequently, a pressure-dependent PSD is a descriptor of the deformation characteristics of an adsorbent and may be the basis of future material characterization techniques. We discuss how, given a technique for resolving pressure-dependent PSDs, the present statistical mechanical theory could enable a new generation of analytical tools that measure and characterize certain intrinsic material properties of flexible adsorbents via otherwise simple adsorption experiments.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Engineering Thermodynamics</subject><subject>External pressure</subject><subject>Free energy</subject><subject>Gas pressure</subject><subject>Heat and Mass Transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Material properties</subject><subject>Pressure dependence</subject><subject>Size distribution</subject><subject>Statistical mechanics</subject><subject>Stresses</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0929-5607</issn><issn>1572-8757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kc2KFTEQhYMoznX0AdxIwI2baJLuzo8LQQb_YECQ2Yd0unpuhu7kmqTVmTfxbU3b42UUXIXK-epUFQehp4y-ZJTKV5nRtqOEMkm0kprQe2jHOsmJkp28j3ZUc006QeUJepTzFaVUC9k8RCdcKS6VFjv08wtMtvgY8t4fcA_lO0DAh5iAZH8DePC5JN8vK4JtGPA4wQ_f-8mXaxxHbIccUw-h4NkWSN5O-TXOpVrm4p2d8Axub4N3eeteypLgyOKqJevW4ub3FrhUPPivC-TH6MFY3eDJ7XuKLt6_uzj7SM4_f_h09vacuI7KQiQfpBhGZYXkTLRKa8YBmGxcI5RWI29H3jNe_yvvdNv03I6DaFzbtm4cmlP0ZrM9LP0Mg6unJDuZQ_KzTdcmWm_-VoLfm8v4zXSdqANZNXhxa5Diuncxs88OpskGiEs2TDeMtxXUFX3-D3oVlxTqdYYpzRulmOKVYhvlUsw5wXhchlGz5m623E3N3ay5G1p7nt294tjxJ-gK8A3IVQqXkO6M_q_rL3JCvd4</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Siderius, Daniel. W.</creator><creator>Mahynski, Nathan. A.</creator><creator>Shen, Vincent K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170501</creationdate><title>Relationship between pore-size distribution and flexibility of adsorbent materials: statistical mechanics and future material characterization techniques</title><author>Siderius, Daniel. W. ; Mahynski, Nathan. A. ; Shen, Vincent K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-72d76df8a67216489912ee173c36898f24f2b12899c50c943b2afd63c444cfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Engineering Thermodynamics</topic><topic>External pressure</topic><topic>Free energy</topic><topic>Gas pressure</topic><topic>Heat and Mass Transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Material properties</topic><topic>Pressure dependence</topic><topic>Size distribution</topic><topic>Statistical mechanics</topic><topic>Stresses</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siderius, Daniel. W.</creatorcontrib><creatorcontrib>Mahynski, Nathan. A.</creatorcontrib><creatorcontrib>Shen, Vincent K.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Adsorption : journal of the International Adsorption Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siderius, Daniel. W.</au><au>Mahynski, Nathan. A.</au><au>Shen, Vincent K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship between pore-size distribution and flexibility of adsorbent materials: statistical mechanics and future material characterization techniques</atitle><jtitle>Adsorption : journal of the International Adsorption Society</jtitle><stitle>Adsorption</stitle><addtitle>Adsorption (Boston)</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>23</volume><issue>4</issue><spage>593</spage><epage>602</epage><pages>593-602</pages><issn>0929-5607</issn><eissn>1572-8757</eissn><abstract>Measurement of the pore-size distribution (PSD) via gas adsorption and the so-called “kernel method” is a widely used characterization technique for rigid adsorbents. Yet, standard techniques and analytical equipment are not appropriate to characterize the emerging class of flexible adsorbents that deform in response to the stress imparted by an adsorbate gas, as the PSD is a characteristic of the material that varies with the gas pressure and any other external stresses. Here, we derive the PSD for a flexible adsorbent using statistical mechanics in the osmotic ensemble to draw analogy to the kernel method for rigid materials. The resultant PSD is a function of the ensemble constraints including all imposed stresses and, most importantly, the deformation free energy of the adsorbent material. Consequently, a pressure-dependent PSD is a descriptor of the deformation characteristics of an adsorbent and may be the basis of future material characterization techniques. We discuss how, given a technique for resolving pressure-dependent PSDs, the present statistical mechanical theory could enable a new generation of analytical tools that measure and characterize certain intrinsic material properties of flexible adsorbents via otherwise simple adsorption experiments.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>28827896</pmid><doi>10.1007/s10450-017-9879-0</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0929-5607
ispartof Adsorption : journal of the International Adsorption Society, 2017-05, Vol.23 (4), p.593-602
issn 0929-5607
1572-8757
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5562161
source Springer Nature - Complete Springer Journals
subjects Adsorbents
Adsorption
Chemistry
Chemistry and Materials Science
Engineering Thermodynamics
External pressure
Free energy
Gas pressure
Heat and Mass Transfer
Industrial Chemistry/Chemical Engineering
Material properties
Pressure dependence
Size distribution
Statistical mechanics
Stresses
Surfaces and Interfaces
Thin Films
title Relationship between pore-size distribution and flexibility of adsorbent materials: statistical mechanics and future material characterization techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20between%20pore-size%20distribution%20and%20flexibility%20of%20adsorbent%20materials:%20statistical%20mechanics%20and%20future%20material%20characterization%20techniques&rft.jtitle=Adsorption%20:%20journal%20of%20the%20International%20Adsorption%20Society&rft.au=Siderius,%20Daniel.%20W.&rft.date=2017-05-01&rft.volume=23&rft.issue=4&rft.spage=593&rft.epage=602&rft.pages=593-602&rft.issn=0929-5607&rft.eissn=1572-8757&rft_id=info:doi/10.1007/s10450-017-9879-0&rft_dat=%3Cproquest_pubme%3E1892388182%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1892388182&rft_id=info:pmid/28827896&rfr_iscdi=true