Interactions of Renal‐Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects

The success of nanomedicines in the clinic depends on our comprehensive understanding of nano–bio interactions in tumor microenvironments, which are characterized by dense leaky microvasculature and acidic extracellular pH (pHe) values. Herein, we investigated the accumulation of ultrasmall renal‐cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2017-04, Vol.56 (15), p.4314-4319
Hauptverfasser: Yu, Mengxiao, Zhou, Chen, Liu, Li, Zhang, Shanrong, Sun, Shasha, Hankins, Julia D., Sun, Xiankai, Zheng, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4319
container_issue 15
container_start_page 4314
container_title Angewandte Chemie International Edition
container_volume 56
creator Yu, Mengxiao
Zhou, Chen
Liu, Li
Zhang, Shanrong
Sun, Shasha
Hankins, Julia D.
Sun, Xiankai
Zheng, Jie
description The success of nanomedicines in the clinic depends on our comprehensive understanding of nano–bio interactions in tumor microenvironments, which are characterized by dense leaky microvasculature and acidic extracellular pH (pHe) values. Herein, we investigated the accumulation of ultrasmall renal‐clearable gold NPs (AuNPs) with and without acidity targeting in xenograft mouse models of two prostate cancer types, PC‐3 and LNCaP, with distinct microenvironments. Our results show that both sets of AuNPs could easily penetrate into the tumors but their uptake and retention were mainly dictated by the tumor microvasculature and the enhanced permeability and retention effect over the entire targeting process. On the other hand, increased tumor acidity indeed enhanced the uptake of AuNPs with acidity targeting, but only for a limited period of time. By making use of simple surface chemistry, these two effects can be synchronized in time for high tumor targeting, opening new possibilities to further improve the targeting efficiencies of nanomedicines. The accumulation of ultrasmall renal‐clearable gold nanoparticles (AuNPs) with and without acidity targeting was investigated in xenograft mouse models of two prostate cancer types with distinct microenvironments. Both sets of AuNPs can easily penetrate into the tumors, but their uptake and retention are mainly dictated by the tumor microvasculature.
doi_str_mv 10.1002/anie.201612647
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5560109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904026176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5337-951fcac9d52c5d9f714adad6c5c77b0ed311cbb546f2c8c0550e49dff651faaf3</originalsourceid><addsrcrecordid>eNqFkctuEzEUhkcIRC-wZYkssZ5gj8f2DAukKAolUmklVNhaZ3yhrhw72DOtsuMR-ow8CY5SAmzKykfydz79On9VvSJ4RjBu3kJwZtZgwknDW_GkOiasITUVgj4tc0tpLTpGjqqTnG8K33WYP6-Omq7pWc_xcZVWYTQJ1OhiyCha9NkE8D9_3C-8gQSDN-gseo0uIMQNpNEpbzK6c-M1uprWMaFPTqVowq1LMaxNGPM79BWymjyMUzIIgkZz5bQbt2hprVFjflE9s-CzefnwnlZfPiyvFh_r88uz1WJ-XitGqah7RqwC1WvWKKZ7K0gLGjRXTAkxYKMpIWoYWMttozqFGcOm7bW1vCwCWHpavd97N9OwNlqVcAm83CS3hrSVEZz89ye4a_kt3krGOCa4L4I3D4IUv08mj_ImTqmcJ0vS4xY3nAj-KNV1pMUdpjtqtqfKtXJOxh5yECx3Tcpdk_LQZFl4_Xf6A_67ugL0e-DOebP9j07OL1bLP_JfPWGutw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881408036</pqid></control><display><type>article</type><title>Interactions of Renal‐Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Yu, Mengxiao ; Zhou, Chen ; Liu, Li ; Zhang, Shanrong ; Sun, Shasha ; Hankins, Julia D. ; Sun, Xiankai ; Zheng, Jie</creator><creatorcontrib>Yu, Mengxiao ; Zhou, Chen ; Liu, Li ; Zhang, Shanrong ; Sun, Shasha ; Hankins, Julia D. ; Sun, Xiankai ; Zheng, Jie</creatorcontrib><description>The success of nanomedicines in the clinic depends on our comprehensive understanding of nano–bio interactions in tumor microenvironments, which are characterized by dense leaky microvasculature and acidic extracellular pH (pHe) values. Herein, we investigated the accumulation of ultrasmall renal‐clearable gold NPs (AuNPs) with and without acidity targeting in xenograft mouse models of two prostate cancer types, PC‐3 and LNCaP, with distinct microenvironments. Our results show that both sets of AuNPs could easily penetrate into the tumors but their uptake and retention were mainly dictated by the tumor microvasculature and the enhanced permeability and retention effect over the entire targeting process. On the other hand, increased tumor acidity indeed enhanced the uptake of AuNPs with acidity targeting, but only for a limited period of time. By making use of simple surface chemistry, these two effects can be synchronized in time for high tumor targeting, opening new possibilities to further improve the targeting efficiencies of nanomedicines. The accumulation of ultrasmall renal‐clearable gold nanoparticles (AuNPs) with and without acidity targeting was investigated in xenograft mouse models of two prostate cancer types with distinct microenvironments. Both sets of AuNPs can easily penetrate into the tumors, but their uptake and retention are mainly dictated by the tumor microvasculature.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201612647</identifier><identifier>PMID: 28295960</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acidity ; Animal models ; Animals ; Gold ; Gold - chemistry ; Gold - metabolism ; Gold - pharmacokinetics ; Humans ; Hydrogen-Ion Concentration ; Kidney - chemistry ; Kidney - metabolism ; Kidneys ; Male ; Metal Nanoparticles - chemistry ; Mice ; Microenvironments ; microvascular density ; Microvasculature ; Mouse devices ; Nanomedicine ; Nanoparticles ; Neoplasms, Experimental - chemistry ; Neoplasms, Experimental - metabolism ; Permeability ; pH effects ; Prostate cancer ; Prostatic Neoplasms - chemistry ; Prostatic Neoplasms - metabolism ; renal clearance ; Retention ; Surface chemistry ; Time synchronization ; Tissue Distribution ; tumor acidity ; Tumor Microenvironment ; tumor targeting ; Tumors ; Xenografts</subject><ispartof>Angewandte Chemie International Edition, 2017-04, Vol.56 (15), p.4314-4319</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5337-951fcac9d52c5d9f714adad6c5c77b0ed311cbb546f2c8c0550e49dff651faaf3</citedby><cites>FETCH-LOGICAL-c5337-951fcac9d52c5d9f714adad6c5c77b0ed311cbb546f2c8c0550e49dff651faaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201612647$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201612647$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28295960$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Mengxiao</creatorcontrib><creatorcontrib>Zhou, Chen</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Zhang, Shanrong</creatorcontrib><creatorcontrib>Sun, Shasha</creatorcontrib><creatorcontrib>Hankins, Julia D.</creatorcontrib><creatorcontrib>Sun, Xiankai</creatorcontrib><creatorcontrib>Zheng, Jie</creatorcontrib><title>Interactions of Renal‐Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The success of nanomedicines in the clinic depends on our comprehensive understanding of nano–bio interactions in tumor microenvironments, which are characterized by dense leaky microvasculature and acidic extracellular pH (pHe) values. Herein, we investigated the accumulation of ultrasmall renal‐clearable gold NPs (AuNPs) with and without acidity targeting in xenograft mouse models of two prostate cancer types, PC‐3 and LNCaP, with distinct microenvironments. Our results show that both sets of AuNPs could easily penetrate into the tumors but their uptake and retention were mainly dictated by the tumor microvasculature and the enhanced permeability and retention effect over the entire targeting process. On the other hand, increased tumor acidity indeed enhanced the uptake of AuNPs with acidity targeting, but only for a limited period of time. By making use of simple surface chemistry, these two effects can be synchronized in time for high tumor targeting, opening new possibilities to further improve the targeting efficiencies of nanomedicines. The accumulation of ultrasmall renal‐clearable gold nanoparticles (AuNPs) with and without acidity targeting was investigated in xenograft mouse models of two prostate cancer types with distinct microenvironments. Both sets of AuNPs can easily penetrate into the tumors, but their uptake and retention are mainly dictated by the tumor microvasculature.</description><subject>Acidity</subject><subject>Animal models</subject><subject>Animals</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Gold - metabolism</subject><subject>Gold - pharmacokinetics</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kidney - chemistry</subject><subject>Kidney - metabolism</subject><subject>Kidneys</subject><subject>Male</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Mice</subject><subject>Microenvironments</subject><subject>microvascular density</subject><subject>Microvasculature</subject><subject>Mouse devices</subject><subject>Nanomedicine</subject><subject>Nanoparticles</subject><subject>Neoplasms, Experimental - chemistry</subject><subject>Neoplasms, Experimental - metabolism</subject><subject>Permeability</subject><subject>pH effects</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - chemistry</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>renal clearance</subject><subject>Retention</subject><subject>Surface chemistry</subject><subject>Time synchronization</subject><subject>Tissue Distribution</subject><subject>tumor acidity</subject><subject>Tumor Microenvironment</subject><subject>tumor targeting</subject><subject>Tumors</subject><subject>Xenografts</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctuEzEUhkcIRC-wZYkssZ5gj8f2DAukKAolUmklVNhaZ3yhrhw72DOtsuMR-ow8CY5SAmzKykfydz79On9VvSJ4RjBu3kJwZtZgwknDW_GkOiasITUVgj4tc0tpLTpGjqqTnG8K33WYP6-Omq7pWc_xcZVWYTQJ1OhiyCha9NkE8D9_3C-8gQSDN-gseo0uIMQNpNEpbzK6c-M1uprWMaFPTqVowq1LMaxNGPM79BWymjyMUzIIgkZz5bQbt2hprVFjflE9s-CzefnwnlZfPiyvFh_r88uz1WJ-XitGqah7RqwC1WvWKKZ7K0gLGjRXTAkxYKMpIWoYWMttozqFGcOm7bW1vCwCWHpavd97N9OwNlqVcAm83CS3hrSVEZz89ye4a_kt3krGOCa4L4I3D4IUv08mj_ImTqmcJ0vS4xY3nAj-KNV1pMUdpjtqtqfKtXJOxh5yECx3Tcpdk_LQZFl4_Xf6A_67ugL0e-DOebP9j07OL1bLP_JfPWGutw</recordid><startdate>20170403</startdate><enddate>20170403</enddate><creator>Yu, Mengxiao</creator><creator>Zhou, Chen</creator><creator>Liu, Li</creator><creator>Zhang, Shanrong</creator><creator>Sun, Shasha</creator><creator>Hankins, Julia D.</creator><creator>Sun, Xiankai</creator><creator>Zheng, Jie</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>5PM</scope></search><sort><creationdate>20170403</creationdate><title>Interactions of Renal‐Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects</title><author>Yu, Mengxiao ; Zhou, Chen ; Liu, Li ; Zhang, Shanrong ; Sun, Shasha ; Hankins, Julia D. ; Sun, Xiankai ; Zheng, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5337-951fcac9d52c5d9f714adad6c5c77b0ed311cbb546f2c8c0550e49dff651faaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acidity</topic><topic>Animal models</topic><topic>Animals</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Gold - metabolism</topic><topic>Gold - pharmacokinetics</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kidney - chemistry</topic><topic>Kidney - metabolism</topic><topic>Kidneys</topic><topic>Male</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Mice</topic><topic>Microenvironments</topic><topic>microvascular density</topic><topic>Microvasculature</topic><topic>Mouse devices</topic><topic>Nanomedicine</topic><topic>Nanoparticles</topic><topic>Neoplasms, Experimental - chemistry</topic><topic>Neoplasms, Experimental - metabolism</topic><topic>Permeability</topic><topic>pH effects</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - chemistry</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>renal clearance</topic><topic>Retention</topic><topic>Surface chemistry</topic><topic>Time synchronization</topic><topic>Tissue Distribution</topic><topic>tumor acidity</topic><topic>Tumor Microenvironment</topic><topic>tumor targeting</topic><topic>Tumors</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Mengxiao</creatorcontrib><creatorcontrib>Zhou, Chen</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Zhang, Shanrong</creatorcontrib><creatorcontrib>Sun, Shasha</creatorcontrib><creatorcontrib>Hankins, Julia D.</creatorcontrib><creatorcontrib>Sun, Xiankai</creatorcontrib><creatorcontrib>Zheng, Jie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Mengxiao</au><au>Zhou, Chen</au><au>Liu, Li</au><au>Zhang, Shanrong</au><au>Sun, Shasha</au><au>Hankins, Julia D.</au><au>Sun, Xiankai</au><au>Zheng, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions of Renal‐Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2017-04-03</date><risdate>2017</risdate><volume>56</volume><issue>15</issue><spage>4314</spage><epage>4319</epage><pages>4314-4319</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>The success of nanomedicines in the clinic depends on our comprehensive understanding of nano–bio interactions in tumor microenvironments, which are characterized by dense leaky microvasculature and acidic extracellular pH (pHe) values. Herein, we investigated the accumulation of ultrasmall renal‐clearable gold NPs (AuNPs) with and without acidity targeting in xenograft mouse models of two prostate cancer types, PC‐3 and LNCaP, with distinct microenvironments. Our results show that both sets of AuNPs could easily penetrate into the tumors but their uptake and retention were mainly dictated by the tumor microvasculature and the enhanced permeability and retention effect over the entire targeting process. On the other hand, increased tumor acidity indeed enhanced the uptake of AuNPs with acidity targeting, but only for a limited period of time. By making use of simple surface chemistry, these two effects can be synchronized in time for high tumor targeting, opening new possibilities to further improve the targeting efficiencies of nanomedicines. The accumulation of ultrasmall renal‐clearable gold nanoparticles (AuNPs) with and without acidity targeting was investigated in xenograft mouse models of two prostate cancer types with distinct microenvironments. Both sets of AuNPs can easily penetrate into the tumors, but their uptake and retention are mainly dictated by the tumor microvasculature.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28295960</pmid><doi>10.1002/anie.201612647</doi><tpages>6</tpages><edition>International ed. in English</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2017-04, Vol.56 (15), p.4314-4319
issn 1433-7851
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5560109
source MEDLINE; Wiley Online Library All Journals
subjects Acidity
Animal models
Animals
Gold
Gold - chemistry
Gold - metabolism
Gold - pharmacokinetics
Humans
Hydrogen-Ion Concentration
Kidney - chemistry
Kidney - metabolism
Kidneys
Male
Metal Nanoparticles - chemistry
Mice
Microenvironments
microvascular density
Microvasculature
Mouse devices
Nanomedicine
Nanoparticles
Neoplasms, Experimental - chemistry
Neoplasms, Experimental - metabolism
Permeability
pH effects
Prostate cancer
Prostatic Neoplasms - chemistry
Prostatic Neoplasms - metabolism
renal clearance
Retention
Surface chemistry
Time synchronization
Tissue Distribution
tumor acidity
Tumor Microenvironment
tumor targeting
Tumors
Xenografts
title Interactions of Renal‐Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20of%20Renal%E2%80%90Clearable%20Gold%20Nanoparticles%20with%20Tumor%20Microenvironments:%20Vasculature%20and%20Acidity%20Effects&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Yu,%20Mengxiao&rft.date=2017-04-03&rft.volume=56&rft.issue=15&rft.spage=4314&rft.epage=4319&rft.pages=4314-4319&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201612647&rft_dat=%3Cproquest_pubme%3E1904026176%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1881408036&rft_id=info:pmid/28295960&rfr_iscdi=true