An Update on Statistical Boosting in Biomedicine

Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2017-01, Vol.2017 (2017), p.1-12
Hauptverfasser: Meyer, Sebastian, Hepp, Tobias, Waldmann, Elisabeth, Hofner, Benjamin, Mayr, Andreas, Gefeller, Olaf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2017
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2017
creator Meyer, Sebastian
Hepp, Tobias
Waldmann, Elisabeth
Hofner, Benjamin
Mayr, Andreas
Gefeller, Olaf
description Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.
doi_str_mv 10.1155/2017/6083072
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5558647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931710562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-6df1f7868fd313a9efb39b0d7dec8fffc148766b50e3d65620aec482d53680fb3</originalsourceid><addsrcrecordid>eNqNkEtLQzEQRoMoPqo713KXglYzyc2jG0HFFxRcqOAupHm0kduk3twq_nsjrVV3rmZgDt83HIT2AZ8AMHZKMIhTjiXFgqyhbRC17HMBcn214-cttJPzC8YMBINNtEWkpEAGeBvh81g9zazuXJVi9dDpLuQuGN1UFymVLY6rEKuLkKbOBhOi20UbXjfZ7S1nDz1dXz1e3vaH9zd3l-fDvqlr2vW59eCF5NJbClQPnB_RwQhbYZ2R3nsDtRScjxh21HLGCdbO1JJYRrnEBe6hs0XubD4q3cbFrtWNmrVhqtsPlXRQfy8xTNQ4vSnGmOS1KAGHy4A2vc5d7tQ0ZOOaRkeX5lnBgIIAXKoLerxATZtybp1f1QBWX5LVl2S1lFzwg9-vreBvqwU4WgCTEK1-D_-Mc4VxXv_QUBNCMP0Ept6OIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931710562</pqid></control><display><type>article</type><title>An Update on Statistical Boosting in Biomedicine</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Meyer, Sebastian ; Hepp, Tobias ; Waldmann, Elisabeth ; Hofner, Benjamin ; Mayr, Andreas ; Gefeller, Olaf</creator><contributor>Kloczkowski, Andrzej</contributor><creatorcontrib>Meyer, Sebastian ; Hepp, Tobias ; Waldmann, Elisabeth ; Hofner, Benjamin ; Mayr, Andreas ; Gefeller, Olaf ; Kloczkowski, Andrzej</creatorcontrib><description>Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.</description><identifier>ISSN: 1748-670X</identifier><identifier>ISSN: 1748-6718</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2017/6083072</identifier><identifier>PMID: 28831290</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Biomedical Research - trends ; Humans ; Models, Statistical ; Review</subject><ispartof>Computational and mathematical methods in medicine, 2017-01, Vol.2017 (2017), p.1-12</ispartof><rights>Copyright © 2017 Andreas Mayr et al.</rights><rights>Copyright © 2017 Andreas Mayr et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-6df1f7868fd313a9efb39b0d7dec8fffc148766b50e3d65620aec482d53680fb3</citedby><cites>FETCH-LOGICAL-c443t-6df1f7868fd313a9efb39b0d7dec8fffc148766b50e3d65620aec482d53680fb3</cites><orcidid>0000-0001-7106-9732 ; 0000-0002-8985-7582 ; 0000-0003-2810-3186 ; 0000-0003-3105-8128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558647/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558647/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28831290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kloczkowski, Andrzej</contributor><creatorcontrib>Meyer, Sebastian</creatorcontrib><creatorcontrib>Hepp, Tobias</creatorcontrib><creatorcontrib>Waldmann, Elisabeth</creatorcontrib><creatorcontrib>Hofner, Benjamin</creatorcontrib><creatorcontrib>Mayr, Andreas</creatorcontrib><creatorcontrib>Gefeller, Olaf</creatorcontrib><title>An Update on Statistical Boosting in Biomedicine</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.</description><subject>Algorithms</subject><subject>Biomedical Research - trends</subject><subject>Humans</subject><subject>Models, Statistical</subject><subject>Review</subject><issn>1748-670X</issn><issn>1748-6718</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkEtLQzEQRoMoPqo713KXglYzyc2jG0HFFxRcqOAupHm0kduk3twq_nsjrVV3rmZgDt83HIT2AZ8AMHZKMIhTjiXFgqyhbRC17HMBcn214-cttJPzC8YMBINNtEWkpEAGeBvh81g9zazuXJVi9dDpLuQuGN1UFymVLY6rEKuLkKbOBhOi20UbXjfZ7S1nDz1dXz1e3vaH9zd3l-fDvqlr2vW59eCF5NJbClQPnB_RwQhbYZ2R3nsDtRScjxh21HLGCdbO1JJYRrnEBe6hs0XubD4q3cbFrtWNmrVhqtsPlXRQfy8xTNQ4vSnGmOS1KAGHy4A2vc5d7tQ0ZOOaRkeX5lnBgIIAXKoLerxATZtybp1f1QBWX5LVl2S1lFzwg9-vreBvqwU4WgCTEK1-D_-Mc4VxXv_QUBNCMP0Ept6OIw</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Meyer, Sebastian</creator><creator>Hepp, Tobias</creator><creator>Waldmann, Elisabeth</creator><creator>Hofner, Benjamin</creator><creator>Mayr, Andreas</creator><creator>Gefeller, Olaf</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7106-9732</orcidid><orcidid>https://orcid.org/0000-0002-8985-7582</orcidid><orcidid>https://orcid.org/0000-0003-2810-3186</orcidid><orcidid>https://orcid.org/0000-0003-3105-8128</orcidid></search><sort><creationdate>20170101</creationdate><title>An Update on Statistical Boosting in Biomedicine</title><author>Meyer, Sebastian ; Hepp, Tobias ; Waldmann, Elisabeth ; Hofner, Benjamin ; Mayr, Andreas ; Gefeller, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-6df1f7868fd313a9efb39b0d7dec8fffc148766b50e3d65620aec482d53680fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Biomedical Research - trends</topic><topic>Humans</topic><topic>Models, Statistical</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Sebastian</creatorcontrib><creatorcontrib>Hepp, Tobias</creatorcontrib><creatorcontrib>Waldmann, Elisabeth</creatorcontrib><creatorcontrib>Hofner, Benjamin</creatorcontrib><creatorcontrib>Mayr, Andreas</creatorcontrib><creatorcontrib>Gefeller, Olaf</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Sebastian</au><au>Hepp, Tobias</au><au>Waldmann, Elisabeth</au><au>Hofner, Benjamin</au><au>Mayr, Andreas</au><au>Gefeller, Olaf</au><au>Kloczkowski, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Update on Statistical Boosting in Biomedicine</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1748-670X</issn><issn>1748-6718</issn><eissn>1748-6718</eissn><abstract>Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>28831290</pmid><doi>10.1155/2017/6083072</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7106-9732</orcidid><orcidid>https://orcid.org/0000-0002-8985-7582</orcidid><orcidid>https://orcid.org/0000-0003-2810-3186</orcidid><orcidid>https://orcid.org/0000-0003-3105-8128</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2017-01, Vol.2017 (2017), p.1-12
issn 1748-670X
1748-6718
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5558647
source MEDLINE; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Biomedical Research - trends
Humans
Models, Statistical
Review
title An Update on Statistical Boosting in Biomedicine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Update%20on%20Statistical%20Boosting%20in%20Biomedicine&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Meyer,%20Sebastian&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2017/6083072&rft_dat=%3Cproquest_pubme%3E1931710562%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931710562&rft_id=info:pmid/28831290&rfr_iscdi=true