An Update on Statistical Boosting in Biomedicine
Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. Th...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2017-01, Vol.2017 (2017), p.1-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2017 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2017 |
creator | Meyer, Sebastian Hepp, Tobias Waldmann, Elisabeth Hofner, Benjamin Mayr, Andreas Gefeller, Olaf |
description | Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine. |
doi_str_mv | 10.1155/2017/6083072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5558647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931710562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-6df1f7868fd313a9efb39b0d7dec8fffc148766b50e3d65620aec482d53680fb3</originalsourceid><addsrcrecordid>eNqNkEtLQzEQRoMoPqo713KXglYzyc2jG0HFFxRcqOAupHm0kduk3twq_nsjrVV3rmZgDt83HIT2AZ8AMHZKMIhTjiXFgqyhbRC17HMBcn214-cttJPzC8YMBINNtEWkpEAGeBvh81g9zazuXJVi9dDpLuQuGN1UFymVLY6rEKuLkKbOBhOi20UbXjfZ7S1nDz1dXz1e3vaH9zd3l-fDvqlr2vW59eCF5NJbClQPnB_RwQhbYZ2R3nsDtRScjxh21HLGCdbO1JJYRrnEBe6hs0XubD4q3cbFrtWNmrVhqtsPlXRQfy8xTNQ4vSnGmOS1KAGHy4A2vc5d7tQ0ZOOaRkeX5lnBgIIAXKoLerxATZtybp1f1QBWX5LVl2S1lFzwg9-vreBvqwU4WgCTEK1-D_-Mc4VxXv_QUBNCMP0Ept6OIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931710562</pqid></control><display><type>article</type><title>An Update on Statistical Boosting in Biomedicine</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Meyer, Sebastian ; Hepp, Tobias ; Waldmann, Elisabeth ; Hofner, Benjamin ; Mayr, Andreas ; Gefeller, Olaf</creator><contributor>Kloczkowski, Andrzej</contributor><creatorcontrib>Meyer, Sebastian ; Hepp, Tobias ; Waldmann, Elisabeth ; Hofner, Benjamin ; Mayr, Andreas ; Gefeller, Olaf ; Kloczkowski, Andrzej</creatorcontrib><description>Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.</description><identifier>ISSN: 1748-670X</identifier><identifier>ISSN: 1748-6718</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2017/6083072</identifier><identifier>PMID: 28831290</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Biomedical Research - trends ; Humans ; Models, Statistical ; Review</subject><ispartof>Computational and mathematical methods in medicine, 2017-01, Vol.2017 (2017), p.1-12</ispartof><rights>Copyright © 2017 Andreas Mayr et al.</rights><rights>Copyright © 2017 Andreas Mayr et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-6df1f7868fd313a9efb39b0d7dec8fffc148766b50e3d65620aec482d53680fb3</citedby><cites>FETCH-LOGICAL-c443t-6df1f7868fd313a9efb39b0d7dec8fffc148766b50e3d65620aec482d53680fb3</cites><orcidid>0000-0001-7106-9732 ; 0000-0002-8985-7582 ; 0000-0003-2810-3186 ; 0000-0003-3105-8128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558647/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558647/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28831290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kloczkowski, Andrzej</contributor><creatorcontrib>Meyer, Sebastian</creatorcontrib><creatorcontrib>Hepp, Tobias</creatorcontrib><creatorcontrib>Waldmann, Elisabeth</creatorcontrib><creatorcontrib>Hofner, Benjamin</creatorcontrib><creatorcontrib>Mayr, Andreas</creatorcontrib><creatorcontrib>Gefeller, Olaf</creatorcontrib><title>An Update on Statistical Boosting in Biomedicine</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.</description><subject>Algorithms</subject><subject>Biomedical Research - trends</subject><subject>Humans</subject><subject>Models, Statistical</subject><subject>Review</subject><issn>1748-670X</issn><issn>1748-6718</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkEtLQzEQRoMoPqo713KXglYzyc2jG0HFFxRcqOAupHm0kduk3twq_nsjrVV3rmZgDt83HIT2AZ8AMHZKMIhTjiXFgqyhbRC17HMBcn214-cttJPzC8YMBINNtEWkpEAGeBvh81g9zazuXJVi9dDpLuQuGN1UFymVLY6rEKuLkKbOBhOi20UbXjfZ7S1nDz1dXz1e3vaH9zd3l-fDvqlr2vW59eCF5NJbClQPnB_RwQhbYZ2R3nsDtRScjxh21HLGCdbO1JJYRrnEBe6hs0XubD4q3cbFrtWNmrVhqtsPlXRQfy8xTNQ4vSnGmOS1KAGHy4A2vc5d7tQ0ZOOaRkeX5lnBgIIAXKoLerxATZtybp1f1QBWX5LVl2S1lFzwg9-vreBvqwU4WgCTEK1-D_-Mc4VxXv_QUBNCMP0Ept6OIw</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Meyer, Sebastian</creator><creator>Hepp, Tobias</creator><creator>Waldmann, Elisabeth</creator><creator>Hofner, Benjamin</creator><creator>Mayr, Andreas</creator><creator>Gefeller, Olaf</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7106-9732</orcidid><orcidid>https://orcid.org/0000-0002-8985-7582</orcidid><orcidid>https://orcid.org/0000-0003-2810-3186</orcidid><orcidid>https://orcid.org/0000-0003-3105-8128</orcidid></search><sort><creationdate>20170101</creationdate><title>An Update on Statistical Boosting in Biomedicine</title><author>Meyer, Sebastian ; Hepp, Tobias ; Waldmann, Elisabeth ; Hofner, Benjamin ; Mayr, Andreas ; Gefeller, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-6df1f7868fd313a9efb39b0d7dec8fffc148766b50e3d65620aec482d53680fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Biomedical Research - trends</topic><topic>Humans</topic><topic>Models, Statistical</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Sebastian</creatorcontrib><creatorcontrib>Hepp, Tobias</creatorcontrib><creatorcontrib>Waldmann, Elisabeth</creatorcontrib><creatorcontrib>Hofner, Benjamin</creatorcontrib><creatorcontrib>Mayr, Andreas</creatorcontrib><creatorcontrib>Gefeller, Olaf</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Sebastian</au><au>Hepp, Tobias</au><au>Waldmann, Elisabeth</au><au>Hofner, Benjamin</au><au>Mayr, Andreas</au><au>Gefeller, Olaf</au><au>Kloczkowski, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Update on Statistical Boosting in Biomedicine</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1748-670X</issn><issn>1748-6718</issn><eissn>1748-6718</eissn><abstract>Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>28831290</pmid><doi>10.1155/2017/6083072</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7106-9732</orcidid><orcidid>https://orcid.org/0000-0002-8985-7582</orcidid><orcidid>https://orcid.org/0000-0003-2810-3186</orcidid><orcidid>https://orcid.org/0000-0003-3105-8128</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2017-01, Vol.2017 (2017), p.1-12 |
issn | 1748-670X 1748-6718 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5558647 |
source | MEDLINE; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Biomedical Research - trends Humans Models, Statistical Review |
title | An Update on Statistical Boosting in Biomedicine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Update%20on%20Statistical%20Boosting%20in%20Biomedicine&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Meyer,%20Sebastian&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2017/6083072&rft_dat=%3Cproquest_pubme%3E1931710562%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931710562&rft_id=info:pmid/28831290&rfr_iscdi=true |