In‐column bonded phase polymerization for improved packing uniformity
It is difficult to pack chromatographic particles having polymeric‐bonded phases because solvents used for making a stable slurry cause the polymer layer to swell. Growth of the polymer inside the column (in situ) after packing was investigated and compared with conventional, ex situ polymer growth....
Gespeichert in:
Veröffentlicht in: | Journal of separation science 2017-05, Vol.40 (10), p.2170-2177 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2177 |
---|---|
container_issue | 10 |
container_start_page | 2170 |
container_title | Journal of separation science |
container_volume | 40 |
creator | Huckabee, Alexis G. Yerneni, Charu Jacobson, Rachel E. Alzate, Edwin J. Chen, Tse‐Hong Wirth, Mary J. |
description | It is difficult to pack chromatographic particles having polymeric‐bonded phases because solvents used for making a stable slurry cause the polymer layer to swell. Growth of the polymer inside the column (in situ) after packing was investigated and compared with conventional, ex situ polymer growth. The method of activators generated by electron transfer, along with atom‐transfer radical polymerization, enabled polymerization under ambient conditions. Nonporous, 0.62 μm silica particles with silane initiators were used. Polyacrylamide films with a hydrated thickness of 23 nm in 75:25 water/isopropanol grew in 55 min for both in situ and ex situ preparations, and the same carbon coverage was observed. Higher chromatographic resolution and better column‐to‐column reproducibility were observed for in situ polymer growth, as evaluated by hydrophilic interaction liquid chromatography for the model glycoprotein, ribonuclease B. In situ polymer growth was also found to give lower eddy diffusion, as shown by a narrower peak width for injected acetonitrile in 50:50 acetonitrile/water. When columns were packed more loosely, bed collapse occurred quickly for ex situ, but not for in situ, polymer growth. The higher resolution and stability for in situ polymer growth is explained by packing with hard, rather than soft, contacts between particles. |
doi_str_mv | 10.1002/jssc.201601376 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5557350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1885938967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5999-4f1f955cf612226b4b1e52c3d2f283846ed7e962268f9d6f66fe0f42e2fda7a03</originalsourceid><addsrcrecordid>eNqFkbtOIzEUhi3EintLiUaioUnW9xk3SChigRXSFkBtOR4bHGbswc4EZSsegWfkSfAobATbUFi2zvn86dg_AIcIjhGE-OcsJT3GEHGISMk3wA7iiI0EQXRzfYZ8G-ymNIMQlZWAW2AbV6QqISl3wMWVf3t51aHpW19Mg69NXXQPKpmiC82yNdH9VXMXfGFDLFzbxbAYCKUfnb8veu9yvXXz5T74YVWTzMHHvgfufp3fTi5H138uriZn1yPNhBAjapEVjGnLEcaYT-kUGYY1qbEdZqLc1KURPLcqK2puObcGWooNtrUqFSR74HTl7fppa2pt_DyqRnbRtSouZVBOfu149yDvw0IyxkrCBsHJhyCGp96kuWxd0qZplDehTxJDDEVeHH-LoqpiglSClxk9_g-dhT76_BMSZRtDVNAqU-MVpWNIKRq7nhtBOcQphzjlOs584ejza9f4v_wyQFfAs2vM8hud_H1zM2EUCfIOKe2tJQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902514948</pqid></control><display><type>article</type><title>In‐column bonded phase polymerization for improved packing uniformity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huckabee, Alexis G. ; Yerneni, Charu ; Jacobson, Rachel E. ; Alzate, Edwin J. ; Chen, Tse‐Hong ; Wirth, Mary J.</creator><creatorcontrib>Huckabee, Alexis G. ; Yerneni, Charu ; Jacobson, Rachel E. ; Alzate, Edwin J. ; Chen, Tse‐Hong ; Wirth, Mary J.</creatorcontrib><description>It is difficult to pack chromatographic particles having polymeric‐bonded phases because solvents used for making a stable slurry cause the polymer layer to swell. Growth of the polymer inside the column (in situ) after packing was investigated and compared with conventional, ex situ polymer growth. The method of activators generated by electron transfer, along with atom‐transfer radical polymerization, enabled polymerization under ambient conditions. Nonporous, 0.62 μm silica particles with silane initiators were used. Polyacrylamide films with a hydrated thickness of 23 nm in 75:25 water/isopropanol grew in 55 min for both in situ and ex situ preparations, and the same carbon coverage was observed. Higher chromatographic resolution and better column‐to‐column reproducibility were observed for in situ polymer growth, as evaluated by hydrophilic interaction liquid chromatography for the model glycoprotein, ribonuclease B. In situ polymer growth was also found to give lower eddy diffusion, as shown by a narrower peak width for injected acetonitrile in 50:50 acetonitrile/water. When columns were packed more loosely, bed collapse occurred quickly for ex situ, but not for in situ, polymer growth. The higher resolution and stability for in situ polymer growth is explained by packing with hard, rather than soft, contacts between particles.</description><identifier>ISSN: 1615-9306</identifier><identifier>EISSN: 1615-9314</identifier><identifier>DOI: 10.1002/jssc.201601376</identifier><identifier>PMID: 28387037</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acetonitrile ; carbon ; Chromatography ; Column chromatography ; Electron transfer ; Glycoproteins ; hydrophilic interaction chromatography ; hydrophilic interaction liquid chromatography ; isopropyl alcohol ; Liquid chromatography ; packing ; Polyacrylamide ; polymer ; Polymerization ; Polymers ; ribonucleases ; silane ; silica ; slurries ; solvents ; stationary phases ; Thickness</subject><ispartof>Journal of separation science, 2017-05, Vol.40 (10), p.2170-2177</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5999-4f1f955cf612226b4b1e52c3d2f283846ed7e962268f9d6f66fe0f42e2fda7a03</citedby><cites>FETCH-LOGICAL-c5999-4f1f955cf612226b4b1e52c3d2f283846ed7e962268f9d6f66fe0f42e2fda7a03</cites><orcidid>0000-0003-2538-6985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjssc.201601376$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjssc.201601376$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28387037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huckabee, Alexis G.</creatorcontrib><creatorcontrib>Yerneni, Charu</creatorcontrib><creatorcontrib>Jacobson, Rachel E.</creatorcontrib><creatorcontrib>Alzate, Edwin J.</creatorcontrib><creatorcontrib>Chen, Tse‐Hong</creatorcontrib><creatorcontrib>Wirth, Mary J.</creatorcontrib><title>In‐column bonded phase polymerization for improved packing uniformity</title><title>Journal of separation science</title><addtitle>J Sep Sci</addtitle><description>It is difficult to pack chromatographic particles having polymeric‐bonded phases because solvents used for making a stable slurry cause the polymer layer to swell. Growth of the polymer inside the column (in situ) after packing was investigated and compared with conventional, ex situ polymer growth. The method of activators generated by electron transfer, along with atom‐transfer radical polymerization, enabled polymerization under ambient conditions. Nonporous, 0.62 μm silica particles with silane initiators were used. Polyacrylamide films with a hydrated thickness of 23 nm in 75:25 water/isopropanol grew in 55 min for both in situ and ex situ preparations, and the same carbon coverage was observed. Higher chromatographic resolution and better column‐to‐column reproducibility were observed for in situ polymer growth, as evaluated by hydrophilic interaction liquid chromatography for the model glycoprotein, ribonuclease B. In situ polymer growth was also found to give lower eddy diffusion, as shown by a narrower peak width for injected acetonitrile in 50:50 acetonitrile/water. When columns were packed more loosely, bed collapse occurred quickly for ex situ, but not for in situ, polymer growth. The higher resolution and stability for in situ polymer growth is explained by packing with hard, rather than soft, contacts between particles.</description><subject>Acetonitrile</subject><subject>carbon</subject><subject>Chromatography</subject><subject>Column chromatography</subject><subject>Electron transfer</subject><subject>Glycoproteins</subject><subject>hydrophilic interaction chromatography</subject><subject>hydrophilic interaction liquid chromatography</subject><subject>isopropyl alcohol</subject><subject>Liquid chromatography</subject><subject>packing</subject><subject>Polyacrylamide</subject><subject>polymer</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>ribonucleases</subject><subject>silane</subject><subject>silica</subject><subject>slurries</subject><subject>solvents</subject><subject>stationary phases</subject><subject>Thickness</subject><issn>1615-9306</issn><issn>1615-9314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkbtOIzEUhi3EintLiUaioUnW9xk3SChigRXSFkBtOR4bHGbswc4EZSsegWfkSfAobATbUFi2zvn86dg_AIcIjhGE-OcsJT3GEHGISMk3wA7iiI0EQXRzfYZ8G-ymNIMQlZWAW2AbV6QqISl3wMWVf3t51aHpW19Mg69NXXQPKpmiC82yNdH9VXMXfGFDLFzbxbAYCKUfnb8veu9yvXXz5T74YVWTzMHHvgfufp3fTi5H138uriZn1yPNhBAjapEVjGnLEcaYT-kUGYY1qbEdZqLc1KURPLcqK2puObcGWooNtrUqFSR74HTl7fppa2pt_DyqRnbRtSouZVBOfu149yDvw0IyxkrCBsHJhyCGp96kuWxd0qZplDehTxJDDEVeHH-LoqpiglSClxk9_g-dhT76_BMSZRtDVNAqU-MVpWNIKRq7nhtBOcQphzjlOs584ejza9f4v_wyQFfAs2vM8hud_H1zM2EUCfIOKe2tJQ</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Huckabee, Alexis G.</creator><creator>Yerneni, Charu</creator><creator>Jacobson, Rachel E.</creator><creator>Alzate, Edwin J.</creator><creator>Chen, Tse‐Hong</creator><creator>Wirth, Mary J.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2538-6985</orcidid></search><sort><creationdate>201705</creationdate><title>In‐column bonded phase polymerization for improved packing uniformity</title><author>Huckabee, Alexis G. ; Yerneni, Charu ; Jacobson, Rachel E. ; Alzate, Edwin J. ; Chen, Tse‐Hong ; Wirth, Mary J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5999-4f1f955cf612226b4b1e52c3d2f283846ed7e962268f9d6f66fe0f42e2fda7a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetonitrile</topic><topic>carbon</topic><topic>Chromatography</topic><topic>Column chromatography</topic><topic>Electron transfer</topic><topic>Glycoproteins</topic><topic>hydrophilic interaction chromatography</topic><topic>hydrophilic interaction liquid chromatography</topic><topic>isopropyl alcohol</topic><topic>Liquid chromatography</topic><topic>packing</topic><topic>Polyacrylamide</topic><topic>polymer</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>ribonucleases</topic><topic>silane</topic><topic>silica</topic><topic>slurries</topic><topic>solvents</topic><topic>stationary phases</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huckabee, Alexis G.</creatorcontrib><creatorcontrib>Yerneni, Charu</creatorcontrib><creatorcontrib>Jacobson, Rachel E.</creatorcontrib><creatorcontrib>Alzate, Edwin J.</creatorcontrib><creatorcontrib>Chen, Tse‐Hong</creatorcontrib><creatorcontrib>Wirth, Mary J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of separation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huckabee, Alexis G.</au><au>Yerneni, Charu</au><au>Jacobson, Rachel E.</au><au>Alzate, Edwin J.</au><au>Chen, Tse‐Hong</au><au>Wirth, Mary J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In‐column bonded phase polymerization for improved packing uniformity</atitle><jtitle>Journal of separation science</jtitle><addtitle>J Sep Sci</addtitle><date>2017-05</date><risdate>2017</risdate><volume>40</volume><issue>10</issue><spage>2170</spage><epage>2177</epage><pages>2170-2177</pages><issn>1615-9306</issn><eissn>1615-9314</eissn><abstract>It is difficult to pack chromatographic particles having polymeric‐bonded phases because solvents used for making a stable slurry cause the polymer layer to swell. Growth of the polymer inside the column (in situ) after packing was investigated and compared with conventional, ex situ polymer growth. The method of activators generated by electron transfer, along with atom‐transfer radical polymerization, enabled polymerization under ambient conditions. Nonporous, 0.62 μm silica particles with silane initiators were used. Polyacrylamide films with a hydrated thickness of 23 nm in 75:25 water/isopropanol grew in 55 min for both in situ and ex situ preparations, and the same carbon coverage was observed. Higher chromatographic resolution and better column‐to‐column reproducibility were observed for in situ polymer growth, as evaluated by hydrophilic interaction liquid chromatography for the model glycoprotein, ribonuclease B. In situ polymer growth was also found to give lower eddy diffusion, as shown by a narrower peak width for injected acetonitrile in 50:50 acetonitrile/water. When columns were packed more loosely, bed collapse occurred quickly for ex situ, but not for in situ, polymer growth. The higher resolution and stability for in situ polymer growth is explained by packing with hard, rather than soft, contacts between particles.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28387037</pmid><doi>10.1002/jssc.201601376</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2538-6985</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-9306 |
ispartof | Journal of separation science, 2017-05, Vol.40 (10), p.2170-2177 |
issn | 1615-9306 1615-9314 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5557350 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acetonitrile carbon Chromatography Column chromatography Electron transfer Glycoproteins hydrophilic interaction chromatography hydrophilic interaction liquid chromatography isopropyl alcohol Liquid chromatography packing Polyacrylamide polymer Polymerization Polymers ribonucleases silane silica slurries solvents stationary phases Thickness |
title | In‐column bonded phase polymerization for improved packing uniformity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A01%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%E2%80%90column%20bonded%20phase%20polymerization%20for%20improved%20packing%20uniformity&rft.jtitle=Journal%20of%20separation%20science&rft.au=Huckabee,%20Alexis%20G.&rft.date=2017-05&rft.volume=40&rft.issue=10&rft.spage=2170&rft.epage=2177&rft.pages=2170-2177&rft.issn=1615-9306&rft.eissn=1615-9314&rft_id=info:doi/10.1002/jssc.201601376&rft_dat=%3Cproquest_pubme%3E1885938967%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902514948&rft_id=info:pmid/28387037&rfr_iscdi=true |