Engineering of obligate intracellular bacteria: progress, challenges and paradigms

Key Points Extracellular bacteria are free-living organisms, whereas facultative intracellular bacteria replicate either inside eukaryotic host cells or in an environmental niche. Obligate intracellular bacteria, which include Chlamydia spp., Anaplasma spp., Ehrlichia spp., Rickettsia spp., Orientia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Microbiology 2017-09, Vol.15 (9), p.544-558
Hauptverfasser: McClure, Erin E., Chávez, Adela S. Oliva, Shaw, Dana K., Carlyon, Jason A., Ganta, Roman R., Noh, Susan M., Wood, David O., Bavoil, Patrik M., Brayton, Kelly A., Martinez, Juan J., McBride, Jere W., Valdivia, Raphael H., Munderloh, Ulrike G., Pedra, Joao H. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 558
container_issue 9
container_start_page 544
container_title Nature reviews. Microbiology
container_volume 15
creator McClure, Erin E.
Chávez, Adela S. Oliva
Shaw, Dana K.
Carlyon, Jason A.
Ganta, Roman R.
Noh, Susan M.
Wood, David O.
Bavoil, Patrik M.
Brayton, Kelly A.
Martinez, Juan J.
McBride, Jere W.
Valdivia, Raphael H.
Munderloh, Ulrike G.
Pedra, Joao H. F.
description Key Points Extracellular bacteria are free-living organisms, whereas facultative intracellular bacteria replicate either inside eukaryotic host cells or in an environmental niche. Obligate intracellular bacteria, which include Chlamydia spp., Anaplasma spp., Ehrlichia spp., Rickettsia spp., Orientia spp. and Coxiella spp., replicate exclusively inside of eukaryotic host cells. Genetic tools for the manipulation of obligate intracellular bacteria have historically been limited; however, there has been considerable recent progress in refining these methods. Such tools include transformation strategies, shuttle vectors, random and targeted mutagenesis through allelic exchange, and mobile group II introns. Novel bacterial molecules that shed light on both microbial pathogenesis mechanisms and host cell biology have been characterized by applying genetic tools to study Chlamydia trachomatis serovar L2 and Rickettsia parkeri . Vaccines against obligate intracellular bacterial infections are lacking. Refining genetic tools would enable the characterization of virulence factors and the development of vaccine candidates. Key questions in bacterial pathogenesis and physiology are primed for investigation once all obligate intracellular bacteria can be genetically manipulated on a routine basis. In this Review, Pedra and colleagues describe the advances and challenges in the genetic engineering of obligate intracellular bacteria, and highlight examples of how the use of genetically manipulated pathogens has improved our understanding of microbial pathogenesis and host–pathogen interactions. It is estimated that approximately one billion people are at risk of infection with obligate intracellular bacteria, but little is known about the underlying mechanisms that govern their life cycles. The difficulty in studying Chlamydia spp., Coxiella spp. , Rickettsia spp., Anaplasma spp., Ehrlichia spp. and Orientia spp. is, in part, due to their genetic intractability. Recently, genetic tools have been developed; however, optimizing the genomic manipulation of obligate intracellular bacteria remains challenging. In this Review, we describe the progress in, as well as the constraints that hinder, the systematic development of a genetic toolbox for obligate intracellular bacteria. We highlight how the use of genetically manipulated pathogens has facilitated a better understanding of microbial pathogenesis and immunity, and how the engineering of obligate intracellular bacteria co
doi_str_mv 10.1038/nrmicro.2017.59
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5557331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A500478859</galeid><sourcerecordid>A500478859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-ec71662c6e4ee0a2b86edbc8469b7c26e6c046afe094845e86586da822f527dc3</originalsourceid><addsrcrecordid>eNp9kc9rFDEUx4NYbK2evcmAFw_uNr8n40EopWqhIIieQybzZpqSScZkRvC_N-Ouy1qopwTyed-89z4IvSJ4SzBTFyGNzqa4pZjUW9E8QWek5nhDBONPD3cqT9HznO8xpkLU9Bk6pUpSSRk-Q1-vw-ACQHJhqGJfxda7wcxQuTAnY8H7xZtUtcbOhTHvqynFIUHO7yp7Z7yHMECuTOiqySTTuWHML9BJb3yGl_vzHH3_eP3t6vPm9sunm6vL240VRM0bsDWRkloJHAAb2ioJXWsVl01bWypBWsyl6QE3XHEBSgolO6Mo7QWtO8vO0Ydd7rS0I3QW1o69npIbTfqlo3H635fg7vQQf2pRtsAYKQFv9wEp_lggz3p0eR3ZBIhL1qQhhGLKlSromwfofVxSKONpRjgrLkgt_0eRhkuBJcNHWYPxoF3o47rp9Wt9KTDmtVKiKdTFjip6c07QHwYjWK_u9d69Xt3rPxWvj_dx4P_KLgDeAXladUM6au-RzN_wNLvE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946506308</pqid></control><display><type>article</type><title>Engineering of obligate intracellular bacteria: progress, challenges and paradigms</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>McClure, Erin E. ; Chávez, Adela S. Oliva ; Shaw, Dana K. ; Carlyon, Jason A. ; Ganta, Roman R. ; Noh, Susan M. ; Wood, David O. ; Bavoil, Patrik M. ; Brayton, Kelly A. ; Martinez, Juan J. ; McBride, Jere W. ; Valdivia, Raphael H. ; Munderloh, Ulrike G. ; Pedra, Joao H. F.</creator><creatorcontrib>McClure, Erin E. ; Chávez, Adela S. Oliva ; Shaw, Dana K. ; Carlyon, Jason A. ; Ganta, Roman R. ; Noh, Susan M. ; Wood, David O. ; Bavoil, Patrik M. ; Brayton, Kelly A. ; Martinez, Juan J. ; McBride, Jere W. ; Valdivia, Raphael H. ; Munderloh, Ulrike G. ; Pedra, Joao H. F.</creatorcontrib><description>Key Points Extracellular bacteria are free-living organisms, whereas facultative intracellular bacteria replicate either inside eukaryotic host cells or in an environmental niche. Obligate intracellular bacteria, which include Chlamydia spp., Anaplasma spp., Ehrlichia spp., Rickettsia spp., Orientia spp. and Coxiella spp., replicate exclusively inside of eukaryotic host cells. Genetic tools for the manipulation of obligate intracellular bacteria have historically been limited; however, there has been considerable recent progress in refining these methods. Such tools include transformation strategies, shuttle vectors, random and targeted mutagenesis through allelic exchange, and mobile group II introns. Novel bacterial molecules that shed light on both microbial pathogenesis mechanisms and host cell biology have been characterized by applying genetic tools to study Chlamydia trachomatis serovar L2 and Rickettsia parkeri . Vaccines against obligate intracellular bacterial infections are lacking. Refining genetic tools would enable the characterization of virulence factors and the development of vaccine candidates. Key questions in bacterial pathogenesis and physiology are primed for investigation once all obligate intracellular bacteria can be genetically manipulated on a routine basis. In this Review, Pedra and colleagues describe the advances and challenges in the genetic engineering of obligate intracellular bacteria, and highlight examples of how the use of genetically manipulated pathogens has improved our understanding of microbial pathogenesis and host–pathogen interactions. It is estimated that approximately one billion people are at risk of infection with obligate intracellular bacteria, but little is known about the underlying mechanisms that govern their life cycles. The difficulty in studying Chlamydia spp., Coxiella spp. , Rickettsia spp., Anaplasma spp., Ehrlichia spp. and Orientia spp. is, in part, due to their genetic intractability. Recently, genetic tools have been developed; however, optimizing the genomic manipulation of obligate intracellular bacteria remains challenging. In this Review, we describe the progress in, as well as the constraints that hinder, the systematic development of a genetic toolbox for obligate intracellular bacteria. We highlight how the use of genetically manipulated pathogens has facilitated a better understanding of microbial pathogenesis and immunity, and how the engineering of obligate intracellular bacteria could enable the discovery of novel signalling circuits in host–pathogen interactions.</description><identifier>ISSN: 1740-1526</identifier><identifier>EISSN: 1740-1534</identifier><identifier>DOI: 10.1038/nrmicro.2017.59</identifier><identifier>PMID: 28626230</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/2300 ; 631/326/325/2482 ; 631/326/41/2531 ; 631/326/41/88 ; Bacteria ; Bacterial diseases ; Bacterial genetics ; Bacterial infections ; Bacterial Infections - genetics ; Bacterial Infections - immunology ; Bacterial Infections - pathology ; Bacterial Toxins - genetics ; Bacterial Toxins - immunology ; Cellular signal transduction ; Chlamydia ; DNA, Bacterial - immunology ; Genetic aspects ; Genetic Engineering ; Genetic research ; Genetic transformation ; Genome, Bacterial - immunology ; Genotypes ; Health aspects ; Health risks ; Host-bacteria relationships ; Host-pathogen interactions ; Host-Pathogen Interactions - genetics ; Host-Pathogen Interactions - immunology ; Humans ; Immunity ; Infectious Diseases ; Intracellular ; Intracellular signalling ; Introns ; Invertebrates ; Life Sciences ; Medical Microbiology ; Microbiological research ; Microbiology ; Microorganisms ; Parasitology ; Pathogenesis ; Pathogens ; Refining ; review-article ; Sexually transmitted diseases ; Shuttle vectors ; Site-directed mutagenesis ; STD ; Testing ; Vaccines ; Virology ; Virulence factors</subject><ispartof>Nature reviews. Microbiology, 2017-09, Vol.15 (9), p.544-558</ispartof><rights>Springer Nature Limited 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-ec71662c6e4ee0a2b86edbc8469b7c26e6c046afe094845e86586da822f527dc3</citedby><cites>FETCH-LOGICAL-c518t-ec71662c6e4ee0a2b86edbc8469b7c26e6c046afe094845e86586da822f527dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nrmicro.2017.59$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nrmicro.2017.59$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28626230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McClure, Erin E.</creatorcontrib><creatorcontrib>Chávez, Adela S. Oliva</creatorcontrib><creatorcontrib>Shaw, Dana K.</creatorcontrib><creatorcontrib>Carlyon, Jason A.</creatorcontrib><creatorcontrib>Ganta, Roman R.</creatorcontrib><creatorcontrib>Noh, Susan M.</creatorcontrib><creatorcontrib>Wood, David O.</creatorcontrib><creatorcontrib>Bavoil, Patrik M.</creatorcontrib><creatorcontrib>Brayton, Kelly A.</creatorcontrib><creatorcontrib>Martinez, Juan J.</creatorcontrib><creatorcontrib>McBride, Jere W.</creatorcontrib><creatorcontrib>Valdivia, Raphael H.</creatorcontrib><creatorcontrib>Munderloh, Ulrike G.</creatorcontrib><creatorcontrib>Pedra, Joao H. F.</creatorcontrib><title>Engineering of obligate intracellular bacteria: progress, challenges and paradigms</title><title>Nature reviews. Microbiology</title><addtitle>Nat Rev Microbiol</addtitle><addtitle>Nat Rev Microbiol</addtitle><description>Key Points Extracellular bacteria are free-living organisms, whereas facultative intracellular bacteria replicate either inside eukaryotic host cells or in an environmental niche. Obligate intracellular bacteria, which include Chlamydia spp., Anaplasma spp., Ehrlichia spp., Rickettsia spp., Orientia spp. and Coxiella spp., replicate exclusively inside of eukaryotic host cells. Genetic tools for the manipulation of obligate intracellular bacteria have historically been limited; however, there has been considerable recent progress in refining these methods. Such tools include transformation strategies, shuttle vectors, random and targeted mutagenesis through allelic exchange, and mobile group II introns. Novel bacterial molecules that shed light on both microbial pathogenesis mechanisms and host cell biology have been characterized by applying genetic tools to study Chlamydia trachomatis serovar L2 and Rickettsia parkeri . Vaccines against obligate intracellular bacterial infections are lacking. Refining genetic tools would enable the characterization of virulence factors and the development of vaccine candidates. Key questions in bacterial pathogenesis and physiology are primed for investigation once all obligate intracellular bacteria can be genetically manipulated on a routine basis. In this Review, Pedra and colleagues describe the advances and challenges in the genetic engineering of obligate intracellular bacteria, and highlight examples of how the use of genetically manipulated pathogens has improved our understanding of microbial pathogenesis and host–pathogen interactions. It is estimated that approximately one billion people are at risk of infection with obligate intracellular bacteria, but little is known about the underlying mechanisms that govern their life cycles. The difficulty in studying Chlamydia spp., Coxiella spp. , Rickettsia spp., Anaplasma spp., Ehrlichia spp. and Orientia spp. is, in part, due to their genetic intractability. Recently, genetic tools have been developed; however, optimizing the genomic manipulation of obligate intracellular bacteria remains challenging. In this Review, we describe the progress in, as well as the constraints that hinder, the systematic development of a genetic toolbox for obligate intracellular bacteria. We highlight how the use of genetically manipulated pathogens has facilitated a better understanding of microbial pathogenesis and immunity, and how the engineering of obligate intracellular bacteria could enable the discovery of novel signalling circuits in host–pathogen interactions.</description><subject>631/1647/2300</subject><subject>631/326/325/2482</subject><subject>631/326/41/2531</subject><subject>631/326/41/88</subject><subject>Bacteria</subject><subject>Bacterial diseases</subject><subject>Bacterial genetics</subject><subject>Bacterial infections</subject><subject>Bacterial Infections - genetics</subject><subject>Bacterial Infections - immunology</subject><subject>Bacterial Infections - pathology</subject><subject>Bacterial Toxins - genetics</subject><subject>Bacterial Toxins - immunology</subject><subject>Cellular signal transduction</subject><subject>Chlamydia</subject><subject>DNA, Bacterial - immunology</subject><subject>Genetic aspects</subject><subject>Genetic Engineering</subject><subject>Genetic research</subject><subject>Genetic transformation</subject><subject>Genome, Bacterial - immunology</subject><subject>Genotypes</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>Host-bacteria relationships</subject><subject>Host-pathogen interactions</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Host-Pathogen Interactions - immunology</subject><subject>Humans</subject><subject>Immunity</subject><subject>Infectious Diseases</subject><subject>Intracellular</subject><subject>Intracellular signalling</subject><subject>Introns</subject><subject>Invertebrates</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Microbiological research</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Parasitology</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Refining</subject><subject>review-article</subject><subject>Sexually transmitted diseases</subject><subject>Shuttle vectors</subject><subject>Site-directed mutagenesis</subject><subject>STD</subject><subject>Testing</subject><subject>Vaccines</subject><subject>Virology</subject><subject>Virulence factors</subject><issn>1740-1526</issn><issn>1740-1534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc9rFDEUx4NYbK2evcmAFw_uNr8n40EopWqhIIieQybzZpqSScZkRvC_N-Ouy1qopwTyed-89z4IvSJ4SzBTFyGNzqa4pZjUW9E8QWek5nhDBONPD3cqT9HznO8xpkLU9Bk6pUpSSRk-Q1-vw-ACQHJhqGJfxda7wcxQuTAnY8H7xZtUtcbOhTHvqynFIUHO7yp7Z7yHMECuTOiqySTTuWHML9BJb3yGl_vzHH3_eP3t6vPm9sunm6vL240VRM0bsDWRkloJHAAb2ioJXWsVl01bWypBWsyl6QE3XHEBSgolO6Mo7QWtO8vO0Ydd7rS0I3QW1o69npIbTfqlo3H635fg7vQQf2pRtsAYKQFv9wEp_lggz3p0eR3ZBIhL1qQhhGLKlSromwfofVxSKONpRjgrLkgt_0eRhkuBJcNHWYPxoF3o47rp9Wt9KTDmtVKiKdTFjip6c07QHwYjWK_u9d69Xt3rPxWvj_dx4P_KLgDeAXladUM6au-RzN_wNLvE</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>McClure, Erin E.</creator><creator>Chávez, Adela S. Oliva</creator><creator>Shaw, Dana K.</creator><creator>Carlyon, Jason A.</creator><creator>Ganta, Roman R.</creator><creator>Noh, Susan M.</creator><creator>Wood, David O.</creator><creator>Bavoil, Patrik M.</creator><creator>Brayton, Kelly A.</creator><creator>Martinez, Juan J.</creator><creator>McBride, Jere W.</creator><creator>Valdivia, Raphael H.</creator><creator>Munderloh, Ulrike G.</creator><creator>Pedra, Joao H. F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170901</creationdate><title>Engineering of obligate intracellular bacteria: progress, challenges and paradigms</title><author>McClure, Erin E. ; Chávez, Adela S. Oliva ; Shaw, Dana K. ; Carlyon, Jason A. ; Ganta, Roman R. ; Noh, Susan M. ; Wood, David O. ; Bavoil, Patrik M. ; Brayton, Kelly A. ; Martinez, Juan J. ; McBride, Jere W. ; Valdivia, Raphael H. ; Munderloh, Ulrike G. ; Pedra, Joao H. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-ec71662c6e4ee0a2b86edbc8469b7c26e6c046afe094845e86586da822f527dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/1647/2300</topic><topic>631/326/325/2482</topic><topic>631/326/41/2531</topic><topic>631/326/41/88</topic><topic>Bacteria</topic><topic>Bacterial diseases</topic><topic>Bacterial genetics</topic><topic>Bacterial infections</topic><topic>Bacterial Infections - genetics</topic><topic>Bacterial Infections - immunology</topic><topic>Bacterial Infections - pathology</topic><topic>Bacterial Toxins - genetics</topic><topic>Bacterial Toxins - immunology</topic><topic>Cellular signal transduction</topic><topic>Chlamydia</topic><topic>DNA, Bacterial - immunology</topic><topic>Genetic aspects</topic><topic>Genetic Engineering</topic><topic>Genetic research</topic><topic>Genetic transformation</topic><topic>Genome, Bacterial - immunology</topic><topic>Genotypes</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>Host-bacteria relationships</topic><topic>Host-pathogen interactions</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Host-Pathogen Interactions - immunology</topic><topic>Humans</topic><topic>Immunity</topic><topic>Infectious Diseases</topic><topic>Intracellular</topic><topic>Intracellular signalling</topic><topic>Introns</topic><topic>Invertebrates</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Microbiological research</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Parasitology</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Refining</topic><topic>review-article</topic><topic>Sexually transmitted diseases</topic><topic>Shuttle vectors</topic><topic>Site-directed mutagenesis</topic><topic>STD</topic><topic>Testing</topic><topic>Vaccines</topic><topic>Virology</topic><topic>Virulence factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McClure, Erin E.</creatorcontrib><creatorcontrib>Chávez, Adela S. Oliva</creatorcontrib><creatorcontrib>Shaw, Dana K.</creatorcontrib><creatorcontrib>Carlyon, Jason A.</creatorcontrib><creatorcontrib>Ganta, Roman R.</creatorcontrib><creatorcontrib>Noh, Susan M.</creatorcontrib><creatorcontrib>Wood, David O.</creatorcontrib><creatorcontrib>Bavoil, Patrik M.</creatorcontrib><creatorcontrib>Brayton, Kelly A.</creatorcontrib><creatorcontrib>Martinez, Juan J.</creatorcontrib><creatorcontrib>McBride, Jere W.</creatorcontrib><creatorcontrib>Valdivia, Raphael H.</creatorcontrib><creatorcontrib>Munderloh, Ulrike G.</creatorcontrib><creatorcontrib>Pedra, Joao H. F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature reviews. Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McClure, Erin E.</au><au>Chávez, Adela S. Oliva</au><au>Shaw, Dana K.</au><au>Carlyon, Jason A.</au><au>Ganta, Roman R.</au><au>Noh, Susan M.</au><au>Wood, David O.</au><au>Bavoil, Patrik M.</au><au>Brayton, Kelly A.</au><au>Martinez, Juan J.</au><au>McBride, Jere W.</au><au>Valdivia, Raphael H.</au><au>Munderloh, Ulrike G.</au><au>Pedra, Joao H. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering of obligate intracellular bacteria: progress, challenges and paradigms</atitle><jtitle>Nature reviews. Microbiology</jtitle><stitle>Nat Rev Microbiol</stitle><addtitle>Nat Rev Microbiol</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>15</volume><issue>9</issue><spage>544</spage><epage>558</epage><pages>544-558</pages><issn>1740-1526</issn><eissn>1740-1534</eissn><abstract>Key Points Extracellular bacteria are free-living organisms, whereas facultative intracellular bacteria replicate either inside eukaryotic host cells or in an environmental niche. Obligate intracellular bacteria, which include Chlamydia spp., Anaplasma spp., Ehrlichia spp., Rickettsia spp., Orientia spp. and Coxiella spp., replicate exclusively inside of eukaryotic host cells. Genetic tools for the manipulation of obligate intracellular bacteria have historically been limited; however, there has been considerable recent progress in refining these methods. Such tools include transformation strategies, shuttle vectors, random and targeted mutagenesis through allelic exchange, and mobile group II introns. Novel bacterial molecules that shed light on both microbial pathogenesis mechanisms and host cell biology have been characterized by applying genetic tools to study Chlamydia trachomatis serovar L2 and Rickettsia parkeri . Vaccines against obligate intracellular bacterial infections are lacking. Refining genetic tools would enable the characterization of virulence factors and the development of vaccine candidates. Key questions in bacterial pathogenesis and physiology are primed for investigation once all obligate intracellular bacteria can be genetically manipulated on a routine basis. In this Review, Pedra and colleagues describe the advances and challenges in the genetic engineering of obligate intracellular bacteria, and highlight examples of how the use of genetically manipulated pathogens has improved our understanding of microbial pathogenesis and host–pathogen interactions. It is estimated that approximately one billion people are at risk of infection with obligate intracellular bacteria, but little is known about the underlying mechanisms that govern their life cycles. The difficulty in studying Chlamydia spp., Coxiella spp. , Rickettsia spp., Anaplasma spp., Ehrlichia spp. and Orientia spp. is, in part, due to their genetic intractability. Recently, genetic tools have been developed; however, optimizing the genomic manipulation of obligate intracellular bacteria remains challenging. In this Review, we describe the progress in, as well as the constraints that hinder, the systematic development of a genetic toolbox for obligate intracellular bacteria. We highlight how the use of genetically manipulated pathogens has facilitated a better understanding of microbial pathogenesis and immunity, and how the engineering of obligate intracellular bacteria could enable the discovery of novel signalling circuits in host–pathogen interactions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28626230</pmid><doi>10.1038/nrmicro.2017.59</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1740-1526
ispartof Nature reviews. Microbiology, 2017-09, Vol.15 (9), p.544-558
issn 1740-1526
1740-1534
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5557331
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects 631/1647/2300
631/326/325/2482
631/326/41/2531
631/326/41/88
Bacteria
Bacterial diseases
Bacterial genetics
Bacterial infections
Bacterial Infections - genetics
Bacterial Infections - immunology
Bacterial Infections - pathology
Bacterial Toxins - genetics
Bacterial Toxins - immunology
Cellular signal transduction
Chlamydia
DNA, Bacterial - immunology
Genetic aspects
Genetic Engineering
Genetic research
Genetic transformation
Genome, Bacterial - immunology
Genotypes
Health aspects
Health risks
Host-bacteria relationships
Host-pathogen interactions
Host-Pathogen Interactions - genetics
Host-Pathogen Interactions - immunology
Humans
Immunity
Infectious Diseases
Intracellular
Intracellular signalling
Introns
Invertebrates
Life Sciences
Medical Microbiology
Microbiological research
Microbiology
Microorganisms
Parasitology
Pathogenesis
Pathogens
Refining
review-article
Sexually transmitted diseases
Shuttle vectors
Site-directed mutagenesis
STD
Testing
Vaccines
Virology
Virulence factors
title Engineering of obligate intracellular bacteria: progress, challenges and paradigms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20of%20obligate%20intracellular%20bacteria:%20progress,%20challenges%20and%20paradigms&rft.jtitle=Nature%20reviews.%20Microbiology&rft.au=McClure,%20Erin%20E.&rft.date=2017-09-01&rft.volume=15&rft.issue=9&rft.spage=544&rft.epage=558&rft.pages=544-558&rft.issn=1740-1526&rft.eissn=1740-1534&rft_id=info:doi/10.1038/nrmicro.2017.59&rft_dat=%3Cgale_pubme%3EA500478859%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946506308&rft_id=info:pmid/28626230&rft_galeid=A500478859&rfr_iscdi=true