Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism

Genetically encoded iNap sensors allow imaging of NADPH with high spatiotemporal resolution in living systems. The iNaps cover physiologically relevant NADPH concentrations and are demonstrated in mammalian cells and live zebrafish. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is esse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2017-07, Vol.14 (7), p.720-728
Hauptverfasser: Tao, Rongkun, Zhao, Yuzheng, Chu, Huanyu, Wang, Aoxue, Zhu, Jiahuan, Chen, Xianjun, Zou, Yejun, Shi, Mei, Liu, Renmei, Su, Ni, Du, Jiulin, Zhou, Hai-Meng, Zhu, Linyong, Qian, Xuhong, Liu, Haiyan, Loscalzo, Joseph, Yang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 728
container_issue 7
container_start_page 720
container_title Nature methods
container_volume 14
creator Tao, Rongkun
Zhao, Yuzheng
Chu, Huanyu
Wang, Aoxue
Zhu, Jiahuan
Chen, Xianjun
Zou, Yejun
Shi, Mei
Liu, Renmei
Su, Ni
Du, Jiulin
Zhou, Hai-Meng
Zhu, Linyong
Qian, Xuhong
Liu, Haiyan
Loscalzo, Joseph
Yang, Yi
description Genetically encoded iNap sensors allow imaging of NADPH with high spatiotemporal resolution in living systems. The iNaps cover physiologically relevant NADPH concentrations and are demonstrated in mammalian cells and live zebrafish. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is essential for biosynthetic reactions and antioxidant functions; however, detection of NADPH metabolism in living cells remains technically challenging. We develop and characterize ratiometric, pH-resistant, genetically encoded fluorescent indicators for NADPH (iNap sensors) with various affinities and wide dynamic range. iNap sensors enabled quantification of cytosolic and mitochondrial NADPH pools that are controlled by cytosolic NAD + kinase levels and revealed cellular NADPH dynamics under oxidative stress depending on glucose availability. We found that mammalian cells have a strong tendency to maintain physiological NADPH homeostasis, which is regulated by glucose-6-phosphate dehydrogenase and AMP kinase. Moreover, using the iNap sensors we monitor NADPH fluctuations during the activation of macrophage cells or wound response in vivo . These data demonstrate that the iNap sensors will be valuable tools for monitoring NADPH dynamics in live cells and gaining new insights into cell metabolism.
doi_str_mv 10.1038/nmeth.4306
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5555402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A497319706</galeid><sourcerecordid>A497319706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-9ac3f853f816151481ab990ca146dab01e5fdb6356debc8b9a5dfaf1a7519843</originalsourceid><addsrcrecordid>eNptkt9vFCEQx4nR2Fp98Q8wm_hiNHcyB-zCi8mlamvSqA_1mbDscKVhocJuk_vv5by2tiqE8GM-84UZhpCXQJdAmXwfR5wulpzR9hE5BMHlogMqHt-uqYID8qyUS0oZ4yvxlByspJDAFT8kP04w4uStCWHbYLRpwKFxYU4Zi8U4NQVjSbk0Ga_RhGbYRjN6W7ebOZjJp9gk13xdf_x-2tRnmD4FX8bn5IkzoeCLm_mInH_-dH58ujj7dvLleH22sIKqaaGMZU6KOqAFAVyC6ZWi1gBvB9NTQOGGvmWiHbC3sldGDM44MJ0AJTk7Ih_2sldzP-Kwe282QV9lP5q81cl4_dAS_YXepGstauN0VQXe3Ajk9HPGMunR17BDMBHTXDQo2gKTkrGKvv4LvUxzjjW6SkGnWq4o_0NtTEDto0v1XrsT1WuuOgaqo22llv-hah-w5jZFdL6eP3B4u3ewOZWS0d3FCFTvakD_rgG9q4EKv7qflTv09tMr8G4PlGqKG8z3QvlX7he_b7xK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917964904</pqid></control><display><type>article</type><title>Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Tao, Rongkun ; Zhao, Yuzheng ; Chu, Huanyu ; Wang, Aoxue ; Zhu, Jiahuan ; Chen, Xianjun ; Zou, Yejun ; Shi, Mei ; Liu, Renmei ; Su, Ni ; Du, Jiulin ; Zhou, Hai-Meng ; Zhu, Linyong ; Qian, Xuhong ; Liu, Haiyan ; Loscalzo, Joseph ; Yang, Yi</creator><creatorcontrib>Tao, Rongkun ; Zhao, Yuzheng ; Chu, Huanyu ; Wang, Aoxue ; Zhu, Jiahuan ; Chen, Xianjun ; Zou, Yejun ; Shi, Mei ; Liu, Renmei ; Su, Ni ; Du, Jiulin ; Zhou, Hai-Meng ; Zhu, Linyong ; Qian, Xuhong ; Liu, Haiyan ; Loscalzo, Joseph ; Yang, Yi</creatorcontrib><description>Genetically encoded iNap sensors allow imaging of NADPH with high spatiotemporal resolution in living systems. The iNaps cover physiologically relevant NADPH concentrations and are demonstrated in mammalian cells and live zebrafish. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is essential for biosynthetic reactions and antioxidant functions; however, detection of NADPH metabolism in living cells remains technically challenging. We develop and characterize ratiometric, pH-resistant, genetically encoded fluorescent indicators for NADPH (iNap sensors) with various affinities and wide dynamic range. iNap sensors enabled quantification of cytosolic and mitochondrial NADPH pools that are controlled by cytosolic NAD + kinase levels and revealed cellular NADPH dynamics under oxidative stress depending on glucose availability. We found that mammalian cells have a strong tendency to maintain physiological NADPH homeostasis, which is regulated by glucose-6-phosphate dehydrogenase and AMP kinase. Moreover, using the iNap sensors we monitor NADPH fluctuations during the activation of macrophage cells or wound response in vivo . These data demonstrate that the iNap sensors will be valuable tools for monitoring NADPH dynamics in live cells and gaining new insights into cell metabolism.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/nmeth.4306</identifier><identifier>PMID: 28581494</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>14/10 ; 14/35 ; 631/1647/1888/2249 ; 631/1647/245/2225 ; 631/61/338/469 ; 631/80/2373 ; AMP-Activated Protein Kinases - genetics ; AMP-Activated Protein Kinases - metabolism ; Animals ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biosensors ; Cell activation ; Cell Survival ; Cells (biology) ; Coding ; Dynamic range ; Fluorescence ; Fluorescent indicators ; Fluorescent proteins ; Gene Expression Regulation - physiology ; Genetic code ; Genetics ; Glucose ; Glucose 6 phosphate dehydrogenase ; Glucose-6-phosphate ; Glucosephosphate dehydrogenase ; Homeostasis ; Humans ; Indicators ; Life Sciences ; Luminescent Proteins - chemistry ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Macrophages ; Mammalian cells ; Mammals ; Metabolism ; Mice ; Mitochondria ; Models, Molecular ; NADP - metabolism ; NADPH-diaphorase ; Nicotinamide ; Nicotinamide adenine dinucleotide ; Nicotinamide adenine dinucleotide phosphate ; Oxidative Stress ; Properties ; Protein Binding ; Protein Conformation ; Protein Domains ; Protein Engineering ; Proteomics ; Sensors</subject><ispartof>Nature methods, 2017-07, Vol.14 (7), p.720-728</ispartof><rights>Springer Nature America, Inc. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-9ac3f853f816151481ab990ca146dab01e5fdb6356debc8b9a5dfaf1a7519843</citedby><cites>FETCH-LOGICAL-c509t-9ac3f853f816151481ab990ca146dab01e5fdb6356debc8b9a5dfaf1a7519843</cites><orcidid>0000-0001-7896-1184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmeth.4306$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmeth.4306$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28581494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tao, Rongkun</creatorcontrib><creatorcontrib>Zhao, Yuzheng</creatorcontrib><creatorcontrib>Chu, Huanyu</creatorcontrib><creatorcontrib>Wang, Aoxue</creatorcontrib><creatorcontrib>Zhu, Jiahuan</creatorcontrib><creatorcontrib>Chen, Xianjun</creatorcontrib><creatorcontrib>Zou, Yejun</creatorcontrib><creatorcontrib>Shi, Mei</creatorcontrib><creatorcontrib>Liu, Renmei</creatorcontrib><creatorcontrib>Su, Ni</creatorcontrib><creatorcontrib>Du, Jiulin</creatorcontrib><creatorcontrib>Zhou, Hai-Meng</creatorcontrib><creatorcontrib>Zhu, Linyong</creatorcontrib><creatorcontrib>Qian, Xuhong</creatorcontrib><creatorcontrib>Liu, Haiyan</creatorcontrib><creatorcontrib>Loscalzo, Joseph</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><title>Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Genetically encoded iNap sensors allow imaging of NADPH with high spatiotemporal resolution in living systems. The iNaps cover physiologically relevant NADPH concentrations and are demonstrated in mammalian cells and live zebrafish. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is essential for biosynthetic reactions and antioxidant functions; however, detection of NADPH metabolism in living cells remains technically challenging. We develop and characterize ratiometric, pH-resistant, genetically encoded fluorescent indicators for NADPH (iNap sensors) with various affinities and wide dynamic range. iNap sensors enabled quantification of cytosolic and mitochondrial NADPH pools that are controlled by cytosolic NAD + kinase levels and revealed cellular NADPH dynamics under oxidative stress depending on glucose availability. We found that mammalian cells have a strong tendency to maintain physiological NADPH homeostasis, which is regulated by glucose-6-phosphate dehydrogenase and AMP kinase. Moreover, using the iNap sensors we monitor NADPH fluctuations during the activation of macrophage cells or wound response in vivo . These data demonstrate that the iNap sensors will be valuable tools for monitoring NADPH dynamics in live cells and gaining new insights into cell metabolism.</description><subject>14/10</subject><subject>14/35</subject><subject>631/1647/1888/2249</subject><subject>631/1647/245/2225</subject><subject>631/61/338/469</subject><subject>631/80/2373</subject><subject>AMP-Activated Protein Kinases - genetics</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biosensors</subject><subject>Cell activation</subject><subject>Cell Survival</subject><subject>Cells (biology)</subject><subject>Coding</subject><subject>Dynamic range</subject><subject>Fluorescence</subject><subject>Fluorescent indicators</subject><subject>Fluorescent proteins</subject><subject>Gene Expression Regulation - physiology</subject><subject>Genetic code</subject><subject>Genetics</subject><subject>Glucose</subject><subject>Glucose 6 phosphate dehydrogenase</subject><subject>Glucose-6-phosphate</subject><subject>Glucosephosphate dehydrogenase</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Indicators</subject><subject>Life Sciences</subject><subject>Luminescent Proteins - chemistry</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Macrophages</subject><subject>Mammalian cells</subject><subject>Mammals</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Models, Molecular</subject><subject>NADP - metabolism</subject><subject>NADPH-diaphorase</subject><subject>Nicotinamide</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Nicotinamide adenine dinucleotide phosphate</subject><subject>Oxidative Stress</subject><subject>Properties</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Domains</subject><subject>Protein Engineering</subject><subject>Proteomics</subject><subject>Sensors</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkt9vFCEQx4nR2Fp98Q8wm_hiNHcyB-zCi8mlamvSqA_1mbDscKVhocJuk_vv5by2tiqE8GM-84UZhpCXQJdAmXwfR5wulpzR9hE5BMHlogMqHt-uqYID8qyUS0oZ4yvxlByspJDAFT8kP04w4uStCWHbYLRpwKFxYU4Zi8U4NQVjSbk0Ga_RhGbYRjN6W7ebOZjJp9gk13xdf_x-2tRnmD4FX8bn5IkzoeCLm_mInH_-dH58ujj7dvLleH22sIKqaaGMZU6KOqAFAVyC6ZWi1gBvB9NTQOGGvmWiHbC3sldGDM44MJ0AJTk7Ih_2sldzP-Kwe282QV9lP5q81cl4_dAS_YXepGstauN0VQXe3Ajk9HPGMunR17BDMBHTXDQo2gKTkrGKvv4LvUxzjjW6SkGnWq4o_0NtTEDto0v1XrsT1WuuOgaqo22llv-hah-w5jZFdL6eP3B4u3ewOZWS0d3FCFTvakD_rgG9q4EKv7qflTv09tMr8G4PlGqKG8z3QvlX7he_b7xK</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Tao, Rongkun</creator><creator>Zhao, Yuzheng</creator><creator>Chu, Huanyu</creator><creator>Wang, Aoxue</creator><creator>Zhu, Jiahuan</creator><creator>Chen, Xianjun</creator><creator>Zou, Yejun</creator><creator>Shi, Mei</creator><creator>Liu, Renmei</creator><creator>Su, Ni</creator><creator>Du, Jiulin</creator><creator>Zhou, Hai-Meng</creator><creator>Zhu, Linyong</creator><creator>Qian, Xuhong</creator><creator>Liu, Haiyan</creator><creator>Loscalzo, Joseph</creator><creator>Yang, Yi</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7896-1184</orcidid></search><sort><creationdate>20170701</creationdate><title>Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism</title><author>Tao, Rongkun ; Zhao, Yuzheng ; Chu, Huanyu ; Wang, Aoxue ; Zhu, Jiahuan ; Chen, Xianjun ; Zou, Yejun ; Shi, Mei ; Liu, Renmei ; Su, Ni ; Du, Jiulin ; Zhou, Hai-Meng ; Zhu, Linyong ; Qian, Xuhong ; Liu, Haiyan ; Loscalzo, Joseph ; Yang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-9ac3f853f816151481ab990ca146dab01e5fdb6356debc8b9a5dfaf1a7519843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>14/10</topic><topic>14/35</topic><topic>631/1647/1888/2249</topic><topic>631/1647/245/2225</topic><topic>631/61/338/469</topic><topic>631/80/2373</topic><topic>AMP-Activated Protein Kinases - genetics</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biosensors</topic><topic>Cell activation</topic><topic>Cell Survival</topic><topic>Cells (biology)</topic><topic>Coding</topic><topic>Dynamic range</topic><topic>Fluorescence</topic><topic>Fluorescent indicators</topic><topic>Fluorescent proteins</topic><topic>Gene Expression Regulation - physiology</topic><topic>Genetic code</topic><topic>Genetics</topic><topic>Glucose</topic><topic>Glucose 6 phosphate dehydrogenase</topic><topic>Glucose-6-phosphate</topic><topic>Glucosephosphate dehydrogenase</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Indicators</topic><topic>Life Sciences</topic><topic>Luminescent Proteins - chemistry</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Macrophages</topic><topic>Mammalian cells</topic><topic>Mammals</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Models, Molecular</topic><topic>NADP - metabolism</topic><topic>NADPH-diaphorase</topic><topic>Nicotinamide</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Nicotinamide adenine dinucleotide phosphate</topic><topic>Oxidative Stress</topic><topic>Properties</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Domains</topic><topic>Protein Engineering</topic><topic>Proteomics</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Rongkun</creatorcontrib><creatorcontrib>Zhao, Yuzheng</creatorcontrib><creatorcontrib>Chu, Huanyu</creatorcontrib><creatorcontrib>Wang, Aoxue</creatorcontrib><creatorcontrib>Zhu, Jiahuan</creatorcontrib><creatorcontrib>Chen, Xianjun</creatorcontrib><creatorcontrib>Zou, Yejun</creatorcontrib><creatorcontrib>Shi, Mei</creatorcontrib><creatorcontrib>Liu, Renmei</creatorcontrib><creatorcontrib>Su, Ni</creatorcontrib><creatorcontrib>Du, Jiulin</creatorcontrib><creatorcontrib>Zhou, Hai-Meng</creatorcontrib><creatorcontrib>Zhu, Linyong</creatorcontrib><creatorcontrib>Qian, Xuhong</creatorcontrib><creatorcontrib>Liu, Haiyan</creatorcontrib><creatorcontrib>Loscalzo, Joseph</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Rongkun</au><au>Zhao, Yuzheng</au><au>Chu, Huanyu</au><au>Wang, Aoxue</au><au>Zhu, Jiahuan</au><au>Chen, Xianjun</au><au>Zou, Yejun</au><au>Shi, Mei</au><au>Liu, Renmei</au><au>Su, Ni</au><au>Du, Jiulin</au><au>Zhou, Hai-Meng</au><au>Zhu, Linyong</au><au>Qian, Xuhong</au><au>Liu, Haiyan</au><au>Loscalzo, Joseph</au><au>Yang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>14</volume><issue>7</issue><spage>720</spage><epage>728</epage><pages>720-728</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Genetically encoded iNap sensors allow imaging of NADPH with high spatiotemporal resolution in living systems. The iNaps cover physiologically relevant NADPH concentrations and are demonstrated in mammalian cells and live zebrafish. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is essential for biosynthetic reactions and antioxidant functions; however, detection of NADPH metabolism in living cells remains technically challenging. We develop and characterize ratiometric, pH-resistant, genetically encoded fluorescent indicators for NADPH (iNap sensors) with various affinities and wide dynamic range. iNap sensors enabled quantification of cytosolic and mitochondrial NADPH pools that are controlled by cytosolic NAD + kinase levels and revealed cellular NADPH dynamics under oxidative stress depending on glucose availability. We found that mammalian cells have a strong tendency to maintain physiological NADPH homeostasis, which is regulated by glucose-6-phosphate dehydrogenase and AMP kinase. Moreover, using the iNap sensors we monitor NADPH fluctuations during the activation of macrophage cells or wound response in vivo . These data demonstrate that the iNap sensors will be valuable tools for monitoring NADPH dynamics in live cells and gaining new insights into cell metabolism.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>28581494</pmid><doi>10.1038/nmeth.4306</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7896-1184</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2017-07, Vol.14 (7), p.720-728
issn 1548-7091
1548-7105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5555402
source MEDLINE; SpringerLink Journals; Nature
subjects 14/10
14/35
631/1647/1888/2249
631/1647/245/2225
631/61/338/469
631/80/2373
AMP-Activated Protein Kinases - genetics
AMP-Activated Protein Kinases - metabolism
Animals
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biosensors
Cell activation
Cell Survival
Cells (biology)
Coding
Dynamic range
Fluorescence
Fluorescent indicators
Fluorescent proteins
Gene Expression Regulation - physiology
Genetic code
Genetics
Glucose
Glucose 6 phosphate dehydrogenase
Glucose-6-phosphate
Glucosephosphate dehydrogenase
Homeostasis
Humans
Indicators
Life Sciences
Luminescent Proteins - chemistry
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Macrophages
Mammalian cells
Mammals
Metabolism
Mice
Mitochondria
Models, Molecular
NADP - metabolism
NADPH-diaphorase
Nicotinamide
Nicotinamide adenine dinucleotide
Nicotinamide adenine dinucleotide phosphate
Oxidative Stress
Properties
Protein Binding
Protein Conformation
Protein Domains
Protein Engineering
Proteomics
Sensors
title Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetically%20encoded%20fluorescent%20sensors%20reveal%20dynamic%20regulation%20of%20NADPH%20metabolism&rft.jtitle=Nature%20methods&rft.au=Tao,%20Rongkun&rft.date=2017-07-01&rft.volume=14&rft.issue=7&rft.spage=720&rft.epage=728&rft.pages=720-728&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/nmeth.4306&rft_dat=%3Cgale_pubme%3EA497319706%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917964904&rft_id=info:pmid/28581494&rft_galeid=A497319706&rfr_iscdi=true