High‐yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii
Summary Microalga‐based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post‐translational modif...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2017-09, Vol.15 (9), p.1214-1224 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1224 |
---|---|
container_issue | 9 |
container_start_page | 1214 |
container_title | Plant biotechnology journal |
container_volume | 15 |
creator | Ramos‐Martinez, Erick Miguel Fimognari, Lorenzo Sakuragi, Yumiko |
description | Summary
Microalga‐based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post‐translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas reinhardtii, a widely used green microalga as a model organism and a potential industrial biotechnology platform. We demonstrated that the putative signal sequence from C. reinhardtii gametolysin can assist the secretion of the yellow fluorescent protein Venus into the culture media. To increase the secretion yields, Venus was C‐terminally fused with synthetic glycomodules comprised of tandem serine (Ser) and proline (Pro) repeats of 10 and 20 units [hereafter (SP)n, wherein n = 10 or 20]. The yields of the (SP)n‐fused Venus were higher than Venus without the glycomodule by up to 12‐fold, with the maximum yield of 15 mg/L. Moreover, the presence of the glycomodules conferred an enhanced proteolytic protein stability. The Venus‐(SP)n proteins were shown to be glycosylated, and a treatment of the cells with brefeldin A led to a suggestion that glycosylation of the (SP)n glycomodules starts in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP)n glycomodule to promote a more efficient biomanufacturing of microalgae‐based recombinant proteins. |
doi_str_mv | 10.1111/pbi.12710 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5552477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733243670</galeid><sourcerecordid>A733243670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5430-944f5064588484f247eb7ebe66c1873b3e17d2e1f47aa9d5d366503aa70214af3</originalsourceid><addsrcrecordid>eNqFkstu1DAUhi0EoqWw4AVQJDawmKnt-JJskMqIXqRKZQErFpaTHE9cJfZgZ4pmxyPwjDwJp512aBEI25It-zv_bx8fQl4yOmfYDleNnzOuGX1E9plQeqaV5I93ayH2yLOcLynlTEn1lOzxilNd12yffDn1y_7n9x8bD0NXZGgTTD6GIroiQRvHxgcbpmKV4gQ-5MKlOBZTD8Xo2xTtsLTFoh_suOniGIPNGOVDb1M3ef-cPHF2yPDidj4gn48_fFqczs4vTs4WR-ezVoqSzmohnKRKyKoSlXBcaGhwgFItq3TZlMB0x4E5oa2tO9mVSklaWqvxPcK68oC82-qu1s0IXQthSnYwq-RHmzYmWm8engTfm2W8MlJKdNMo8OZWIMWva8iTGX1uYRhsgLjOhlNKpUI78V-UVaquVVWXEtHXf6CXcZ0CZsKwmmulKNXlb2ppBzA-uIhXbK9FzREeoyUaIzX_C4W9A_yIGMB53H8Q8HYbgL-UcwK3Swej5rpoDBaNuSkaZF_dz9-OvKsSBA63wDd02fxbyXx8f7aV_AV2Hcsa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927660073</pqid></control><display><type>article</type><title>High‐yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Wiley Open Access</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Ramos‐Martinez, Erick Miguel ; Fimognari, Lorenzo ; Sakuragi, Yumiko</creator><creatorcontrib>Ramos‐Martinez, Erick Miguel ; Fimognari, Lorenzo ; Sakuragi, Yumiko</creatorcontrib><description>Summary
Microalga‐based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post‐translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas reinhardtii, a widely used green microalga as a model organism and a potential industrial biotechnology platform. We demonstrated that the putative signal sequence from C. reinhardtii gametolysin can assist the secretion of the yellow fluorescent protein Venus into the culture media. To increase the secretion yields, Venus was C‐terminally fused with synthetic glycomodules comprised of tandem serine (Ser) and proline (Pro) repeats of 10 and 20 units [hereafter (SP)n, wherein n = 10 or 20]. The yields of the (SP)n‐fused Venus were higher than Venus without the glycomodule by up to 12‐fold, with the maximum yield of 15 mg/L. Moreover, the presence of the glycomodules conferred an enhanced proteolytic protein stability. The Venus‐(SP)n proteins were shown to be glycosylated, and a treatment of the cells with brefeldin A led to a suggestion that glycosylation of the (SP)n glycomodules starts in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP)n glycomodule to promote a more efficient biomanufacturing of microalgae‐based recombinant proteins.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12710</identifier><identifier>PMID: 28207991</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Algae ; Aquatic microorganisms ; Biological products ; Biotechnology ; Brefeldin A ; C. reinhardtii ; Cell culture ; Chlamydomonas reinhardtii ; Chlamydomonas reinhardtii - genetics ; Chlamydomonas reinhardtii - growth & development ; Chlamydomonas reinhardtii - metabolism ; Culture Media ; Endoplasmic reticulum ; Fluorescence ; Gametolysin ; Genes, Reporter ; Genetic recombination ; glycomodule ; Glycoproteins - genetics ; Glycoproteins - secretion ; Glycosylation ; Metalloproteases - genetics ; Metalloproteases - secretion ; Microalgae ; Physiological aspects ; Plants, Genetically Modified ; Post-translation ; Proline ; Protein Processing, Post-Translational ; protein secretion ; Protein Sorting Signals - genetics ; Protein Transport ; Proteins ; Proteolysis ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - secretion ; Recombinant proteins ; Secretion ; Serine ; signal peptide ; signal sequence ; Yellow fluorescent protein</subject><ispartof>Plant biotechnology journal, 2017-09, Vol.15 (9), p.1214-1224</ispartof><rights>2017 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>COPYRIGHT 2017 John Wiley & Sons, Inc.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5430-944f5064588484f247eb7ebe66c1873b3e17d2e1f47aa9d5d366503aa70214af3</citedby><cites>FETCH-LOGICAL-c5430-944f5064588484f247eb7ebe66c1873b3e17d2e1f47aa9d5d366503aa70214af3</cites><orcidid>0000-0002-9405-5197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12710$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12710$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,1416,11553,27915,27916,45565,45566,46043,46467</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28207991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramos‐Martinez, Erick Miguel</creatorcontrib><creatorcontrib>Fimognari, Lorenzo</creatorcontrib><creatorcontrib>Sakuragi, Yumiko</creatorcontrib><title>High‐yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
Microalga‐based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post‐translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas reinhardtii, a widely used green microalga as a model organism and a potential industrial biotechnology platform. We demonstrated that the putative signal sequence from C. reinhardtii gametolysin can assist the secretion of the yellow fluorescent protein Venus into the culture media. To increase the secretion yields, Venus was C‐terminally fused with synthetic glycomodules comprised of tandem serine (Ser) and proline (Pro) repeats of 10 and 20 units [hereafter (SP)n, wherein n = 10 or 20]. The yields of the (SP)n‐fused Venus were higher than Venus without the glycomodule by up to 12‐fold, with the maximum yield of 15 mg/L. Moreover, the presence of the glycomodules conferred an enhanced proteolytic protein stability. The Venus‐(SP)n proteins were shown to be glycosylated, and a treatment of the cells with brefeldin A led to a suggestion that glycosylation of the (SP)n glycomodules starts in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP)n glycomodule to promote a more efficient biomanufacturing of microalgae‐based recombinant proteins.</description><subject>Algae</subject><subject>Aquatic microorganisms</subject><subject>Biological products</subject><subject>Biotechnology</subject><subject>Brefeldin A</subject><subject>C. reinhardtii</subject><subject>Cell culture</subject><subject>Chlamydomonas reinhardtii</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Chlamydomonas reinhardtii - growth & development</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Culture Media</subject><subject>Endoplasmic reticulum</subject><subject>Fluorescence</subject><subject>Gametolysin</subject><subject>Genes, Reporter</subject><subject>Genetic recombination</subject><subject>glycomodule</subject><subject>Glycoproteins - genetics</subject><subject>Glycoproteins - secretion</subject><subject>Glycosylation</subject><subject>Metalloproteases - genetics</subject><subject>Metalloproteases - secretion</subject><subject>Microalgae</subject><subject>Physiological aspects</subject><subject>Plants, Genetically Modified</subject><subject>Post-translation</subject><subject>Proline</subject><subject>Protein Processing, Post-Translational</subject><subject>protein secretion</subject><subject>Protein Sorting Signals - genetics</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - secretion</subject><subject>Recombinant proteins</subject><subject>Secretion</subject><subject>Serine</subject><subject>signal peptide</subject><subject>signal sequence</subject><subject>Yellow fluorescent protein</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkstu1DAUhi0EoqWw4AVQJDawmKnt-JJskMqIXqRKZQErFpaTHE9cJfZgZ4pmxyPwjDwJp512aBEI25It-zv_bx8fQl4yOmfYDleNnzOuGX1E9plQeqaV5I93ayH2yLOcLynlTEn1lOzxilNd12yffDn1y_7n9x8bD0NXZGgTTD6GIroiQRvHxgcbpmKV4gQ-5MKlOBZTD8Xo2xTtsLTFoh_suOniGIPNGOVDb1M3ef-cPHF2yPDidj4gn48_fFqczs4vTs4WR-ezVoqSzmohnKRKyKoSlXBcaGhwgFItq3TZlMB0x4E5oa2tO9mVSklaWqvxPcK68oC82-qu1s0IXQthSnYwq-RHmzYmWm8engTfm2W8MlJKdNMo8OZWIMWva8iTGX1uYRhsgLjOhlNKpUI78V-UVaquVVWXEtHXf6CXcZ0CZsKwmmulKNXlb2ppBzA-uIhXbK9FzREeoyUaIzX_C4W9A_yIGMB53H8Q8HYbgL-UcwK3Swej5rpoDBaNuSkaZF_dz9-OvKsSBA63wDd02fxbyXx8f7aV_AV2Hcsa</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Ramos‐Martinez, Erick Miguel</creator><creator>Fimognari, Lorenzo</creator><creator>Sakuragi, Yumiko</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9405-5197</orcidid></search><sort><creationdate>201709</creationdate><title>High‐yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii</title><author>Ramos‐Martinez, Erick Miguel ; Fimognari, Lorenzo ; Sakuragi, Yumiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5430-944f5064588484f247eb7ebe66c1873b3e17d2e1f47aa9d5d366503aa70214af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algae</topic><topic>Aquatic microorganisms</topic><topic>Biological products</topic><topic>Biotechnology</topic><topic>Brefeldin A</topic><topic>C. reinhardtii</topic><topic>Cell culture</topic><topic>Chlamydomonas reinhardtii</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Chlamydomonas reinhardtii - growth & development</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Culture Media</topic><topic>Endoplasmic reticulum</topic><topic>Fluorescence</topic><topic>Gametolysin</topic><topic>Genes, Reporter</topic><topic>Genetic recombination</topic><topic>glycomodule</topic><topic>Glycoproteins - genetics</topic><topic>Glycoproteins - secretion</topic><topic>Glycosylation</topic><topic>Metalloproteases - genetics</topic><topic>Metalloproteases - secretion</topic><topic>Microalgae</topic><topic>Physiological aspects</topic><topic>Plants, Genetically Modified</topic><topic>Post-translation</topic><topic>Proline</topic><topic>Protein Processing, Post-Translational</topic><topic>protein secretion</topic><topic>Protein Sorting Signals - genetics</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - secretion</topic><topic>Recombinant proteins</topic><topic>Secretion</topic><topic>Serine</topic><topic>signal peptide</topic><topic>signal sequence</topic><topic>Yellow fluorescent protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos‐Martinez, Erick Miguel</creatorcontrib><creatorcontrib>Fimognari, Lorenzo</creatorcontrib><creatorcontrib>Sakuragi, Yumiko</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos‐Martinez, Erick Miguel</au><au>Fimognari, Lorenzo</au><au>Sakuragi, Yumiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2017-09</date><risdate>2017</risdate><volume>15</volume><issue>9</issue><spage>1214</spage><epage>1224</epage><pages>1214-1224</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary
Microalga‐based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post‐translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas reinhardtii, a widely used green microalga as a model organism and a potential industrial biotechnology platform. We demonstrated that the putative signal sequence from C. reinhardtii gametolysin can assist the secretion of the yellow fluorescent protein Venus into the culture media. To increase the secretion yields, Venus was C‐terminally fused with synthetic glycomodules comprised of tandem serine (Ser) and proline (Pro) repeats of 10 and 20 units [hereafter (SP)n, wherein n = 10 or 20]. The yields of the (SP)n‐fused Venus were higher than Venus without the glycomodule by up to 12‐fold, with the maximum yield of 15 mg/L. Moreover, the presence of the glycomodules conferred an enhanced proteolytic protein stability. The Venus‐(SP)n proteins were shown to be glycosylated, and a treatment of the cells with brefeldin A led to a suggestion that glycosylation of the (SP)n glycomodules starts in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP)n glycomodule to promote a more efficient biomanufacturing of microalgae‐based recombinant proteins.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>28207991</pmid><doi>10.1111/pbi.12710</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9405-5197</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2017-09, Vol.15 (9), p.1214-1224 |
issn | 1467-7644 1467-7652 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5552477 |
source | Wiley-Blackwell Journals; MEDLINE; Wiley Open Access; Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Algae Aquatic microorganisms Biological products Biotechnology Brefeldin A C. reinhardtii Cell culture Chlamydomonas reinhardtii Chlamydomonas reinhardtii - genetics Chlamydomonas reinhardtii - growth & development Chlamydomonas reinhardtii - metabolism Culture Media Endoplasmic reticulum Fluorescence Gametolysin Genes, Reporter Genetic recombination glycomodule Glycoproteins - genetics Glycoproteins - secretion Glycosylation Metalloproteases - genetics Metalloproteases - secretion Microalgae Physiological aspects Plants, Genetically Modified Post-translation Proline Protein Processing, Post-Translational protein secretion Protein Sorting Signals - genetics Protein Transport Proteins Proteolysis Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - secretion Recombinant proteins Secretion Serine signal peptide signal sequence Yellow fluorescent protein |
title | High‐yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A33%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90yield%20secretion%20of%20recombinant%20proteins%20from%20the%20microalga%20Chlamydomonas%20reinhardtii&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Ramos%E2%80%90Martinez,%20Erick%20Miguel&rft.date=2017-09&rft.volume=15&rft.issue=9&rft.spage=1214&rft.epage=1224&rft.pages=1214-1224&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12710&rft_dat=%3Cgale_pubme%3EA733243670%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927660073&rft_id=info:pmid/28207991&rft_galeid=A733243670&rfr_iscdi=true |