Robust Significance Analysis of Microarrays by Minimum β-Divergence Method

Identification of differentially expressed (DE) genes with two or more conditions is an important task for discovery of few biomarker genes. Significance Analysis of Microarrays (SAM) is a popular statistical approach for identification of DE genes for both small- and large-sample cases. However, it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2017-01, Vol.2017 (2017), p.1-18
Hauptverfasser: Mollah, Md. Nurul Haque, Ara Begum, Anjuman, Ahmed, Md. Shakil, Mollah, Md. Manir Hossain, Kumar, Nishith, Shahjaman, Md, Shahinul Islam, S. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 2017
container_start_page 1
container_title BioMed research international
container_volume 2017
creator Mollah, Md. Nurul Haque
Ara Begum, Anjuman
Ahmed, Md. Shakil
Mollah, Md. Manir Hossain
Kumar, Nishith
Shahjaman, Md
Shahinul Islam, S. M.
description Identification of differentially expressed (DE) genes with two or more conditions is an important task for discovery of few biomarker genes. Significance Analysis of Microarrays (SAM) is a popular statistical approach for identification of DE genes for both small- and large-sample cases. However, it is sensitive to outlying gene expressions and produces low power in presence of outliers. Therefore, in this paper, an attempt is made to robustify the SAM approach using the minimum β-divergence estimators instead of the maximum likelihood estimators of the parameters. We demonstrated the performance of the proposed method in a comparison of some other popular statistical methods such as ANOVA, SAM, LIMMA, KW, EBarrays, GaGa, and BRIDGE using both simulated and real gene expression datasets. We observe that all methods show good and almost equal performance in absence of outliers for the large-sample cases, while in the small-sample cases only three methods (SAM, LIMMA, and proposed) show almost equal and better performance than others with two or more conditions. However, in the presence of outliers, on an average, only the proposed method performs better than others for both small- and large-sample cases with each condition.
doi_str_mv 10.1155/2017/5310198
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5551475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1926424886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-9e17d9096a3accc6bbaa47787bc1550d78171105d0eaf98fe9993e802f30ae8f3</originalsourceid><addsrcrecordid>eNqNkctu1DAUhi0EolXpjjWKxAYJQn1iO7Y3SFW5ilZIXNaW4xzPuEriYidF81o8CM-ERzMMlxXeHFv-zn8uPyEPgT4HEOKsoSDPBAMKWt0hxw0DXrfA4e7hztgROc35mpajoKW6vU-OGqVAt017TN5_jN2S5-pTWE3BB2cnh9X5ZIdNDrmKvroKLkWbkt3kqtuU5xTGZax-fK9fhltMK9wmXOG8jv0Dcs_bIePpPp6QL69ffb54W19-ePPu4vyydlzCXGsE2evSiGXWOdd2nbVcSiU7V0aivVQgAajoKVqvlUetNUNFG8-oReXZCXmx071ZuhF7h9Oc7GBuUhht2phog_n7Zwprs4q3RggBXIoi8GQvkOLXBfNsxpAdDoOdMC7ZgGaUy1KRF_TxP-h1XFLZz5ZqWt5wpdpCPdtRZVc5J_SHZoCarVFma5TZG1XwR38OcIB_2VKApztgHabefgv_KYeFQW9_08Ck4JL9BPoKpQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926424886</pqid></control><display><type>article</type><title>Robust Significance Analysis of Microarrays by Minimum β-Divergence Method</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Mollah, Md. Nurul Haque ; Ara Begum, Anjuman ; Ahmed, Md. Shakil ; Mollah, Md. Manir Hossain ; Kumar, Nishith ; Shahjaman, Md ; Shahinul Islam, S. M.</creator><contributor>Ali, Hesham H.</contributor><creatorcontrib>Mollah, Md. Nurul Haque ; Ara Begum, Anjuman ; Ahmed, Md. Shakil ; Mollah, Md. Manir Hossain ; Kumar, Nishith ; Shahjaman, Md ; Shahinul Islam, S. M. ; Ali, Hesham H.</creatorcontrib><description>Identification of differentially expressed (DE) genes with two or more conditions is an important task for discovery of few biomarker genes. Significance Analysis of Microarrays (SAM) is a popular statistical approach for identification of DE genes for both small- and large-sample cases. However, it is sensitive to outlying gene expressions and produces low power in presence of outliers. Therefore, in this paper, an attempt is made to robustify the SAM approach using the minimum β-divergence estimators instead of the maximum likelihood estimators of the parameters. We demonstrated the performance of the proposed method in a comparison of some other popular statistical methods such as ANOVA, SAM, LIMMA, KW, EBarrays, GaGa, and BRIDGE using both simulated and real gene expression datasets. We observe that all methods show good and almost equal performance in absence of outliers for the large-sample cases, while in the small-sample cases only three methods (SAM, LIMMA, and proposed) show almost equal and better performance than others with two or more conditions. However, in the presence of outliers, on an average, only the proposed method performs better than others for both small- and large-sample cases with each condition.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2017/5310198</identifier><identifier>PMID: 28819626</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Bioinformatics ; Biomarkers ; Biometry ; Breast cancer ; Data analysis ; Divergence ; DNA microarrays ; Gene expression ; Gene Expression Profiling - statistics &amp; numerical data ; Gene Expression Regulation - genetics ; Genes ; Hypotheses ; Maximum likelihood estimators ; Methods ; Microarray Analysis - statistics &amp; numerical data ; Neural networks ; Oligonucleotide Array Sequence Analysis - statistics &amp; numerical data ; Outliers (statistics) ; Parameter estimation ; Researchers ; Sample variance ; Statistical methods ; Statistics ; Variance analysis</subject><ispartof>BioMed research international, 2017-01, Vol.2017 (2017), p.1-18</ispartof><rights>Copyright © 2017 Md. Shahjaman et al.</rights><rights>Copyright © 2017 Md. Shahjaman et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2017 Md. Shahjaman et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-9e17d9096a3accc6bbaa47787bc1550d78171105d0eaf98fe9993e802f30ae8f3</citedby><cites>FETCH-LOGICAL-c471t-9e17d9096a3accc6bbaa47787bc1550d78171105d0eaf98fe9993e802f30ae8f3</cites><orcidid>0000-0002-1911-4775 ; 0000-0002-5027-1613 ; 0000-0001-7434-922X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551475/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551475/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28819626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ali, Hesham H.</contributor><creatorcontrib>Mollah, Md. Nurul Haque</creatorcontrib><creatorcontrib>Ara Begum, Anjuman</creatorcontrib><creatorcontrib>Ahmed, Md. Shakil</creatorcontrib><creatorcontrib>Mollah, Md. Manir Hossain</creatorcontrib><creatorcontrib>Kumar, Nishith</creatorcontrib><creatorcontrib>Shahjaman, Md</creatorcontrib><creatorcontrib>Shahinul Islam, S. M.</creatorcontrib><title>Robust Significance Analysis of Microarrays by Minimum β-Divergence Method</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Identification of differentially expressed (DE) genes with two or more conditions is an important task for discovery of few biomarker genes. Significance Analysis of Microarrays (SAM) is a popular statistical approach for identification of DE genes for both small- and large-sample cases. However, it is sensitive to outlying gene expressions and produces low power in presence of outliers. Therefore, in this paper, an attempt is made to robustify the SAM approach using the minimum β-divergence estimators instead of the maximum likelihood estimators of the parameters. We demonstrated the performance of the proposed method in a comparison of some other popular statistical methods such as ANOVA, SAM, LIMMA, KW, EBarrays, GaGa, and BRIDGE using both simulated and real gene expression datasets. We observe that all methods show good and almost equal performance in absence of outliers for the large-sample cases, while in the small-sample cases only three methods (SAM, LIMMA, and proposed) show almost equal and better performance than others with two or more conditions. However, in the presence of outliers, on an average, only the proposed method performs better than others for both small- and large-sample cases with each condition.</description><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Biomarkers</subject><subject>Biometry</subject><subject>Breast cancer</subject><subject>Data analysis</subject><subject>Divergence</subject><subject>DNA microarrays</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - statistics &amp; numerical data</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genes</subject><subject>Hypotheses</subject><subject>Maximum likelihood estimators</subject><subject>Methods</subject><subject>Microarray Analysis - statistics &amp; numerical data</subject><subject>Neural networks</subject><subject>Oligonucleotide Array Sequence Analysis - statistics &amp; numerical data</subject><subject>Outliers (statistics)</subject><subject>Parameter estimation</subject><subject>Researchers</subject><subject>Sample variance</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Variance analysis</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkctu1DAUhi0EolXpjjWKxAYJQn1iO7Y3SFW5ilZIXNaW4xzPuEriYidF81o8CM-ERzMMlxXeHFv-zn8uPyEPgT4HEOKsoSDPBAMKWt0hxw0DXrfA4e7hztgROc35mpajoKW6vU-OGqVAt017TN5_jN2S5-pTWE3BB2cnh9X5ZIdNDrmKvroKLkWbkt3kqtuU5xTGZax-fK9fhltMK9wmXOG8jv0Dcs_bIePpPp6QL69ffb54W19-ePPu4vyydlzCXGsE2evSiGXWOdd2nbVcSiU7V0aivVQgAajoKVqvlUetNUNFG8-oReXZCXmx071ZuhF7h9Oc7GBuUhht2phog_n7Zwprs4q3RggBXIoi8GQvkOLXBfNsxpAdDoOdMC7ZgGaUy1KRF_TxP-h1XFLZz5ZqWt5wpdpCPdtRZVc5J_SHZoCarVFma5TZG1XwR38OcIB_2VKApztgHabefgv_KYeFQW9_08Ck4JL9BPoKpQg</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Mollah, Md. Nurul Haque</creator><creator>Ara Begum, Anjuman</creator><creator>Ahmed, Md. Shakil</creator><creator>Mollah, Md. Manir Hossain</creator><creator>Kumar, Nishith</creator><creator>Shahjaman, Md</creator><creator>Shahinul Islam, S. M.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1911-4775</orcidid><orcidid>https://orcid.org/0000-0002-5027-1613</orcidid><orcidid>https://orcid.org/0000-0001-7434-922X</orcidid></search><sort><creationdate>20170101</creationdate><title>Robust Significance Analysis of Microarrays by Minimum β-Divergence Method</title><author>Mollah, Md. Nurul Haque ; Ara Begum, Anjuman ; Ahmed, Md. Shakil ; Mollah, Md. Manir Hossain ; Kumar, Nishith ; Shahjaman, Md ; Shahinul Islam, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-9e17d9096a3accc6bbaa47787bc1550d78171105d0eaf98fe9993e802f30ae8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Biomarkers</topic><topic>Biometry</topic><topic>Breast cancer</topic><topic>Data analysis</topic><topic>Divergence</topic><topic>DNA microarrays</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - statistics &amp; numerical data</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genes</topic><topic>Hypotheses</topic><topic>Maximum likelihood estimators</topic><topic>Methods</topic><topic>Microarray Analysis - statistics &amp; numerical data</topic><topic>Neural networks</topic><topic>Oligonucleotide Array Sequence Analysis - statistics &amp; numerical data</topic><topic>Outliers (statistics)</topic><topic>Parameter estimation</topic><topic>Researchers</topic><topic>Sample variance</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mollah, Md. Nurul Haque</creatorcontrib><creatorcontrib>Ara Begum, Anjuman</creatorcontrib><creatorcontrib>Ahmed, Md. Shakil</creatorcontrib><creatorcontrib>Mollah, Md. Manir Hossain</creatorcontrib><creatorcontrib>Kumar, Nishith</creatorcontrib><creatorcontrib>Shahjaman, Md</creatorcontrib><creatorcontrib>Shahinul Islam, S. M.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mollah, Md. Nurul Haque</au><au>Ara Begum, Anjuman</au><au>Ahmed, Md. Shakil</au><au>Mollah, Md. Manir Hossain</au><au>Kumar, Nishith</au><au>Shahjaman, Md</au><au>Shahinul Islam, S. M.</au><au>Ali, Hesham H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Significance Analysis of Microarrays by Minimum β-Divergence Method</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Identification of differentially expressed (DE) genes with two or more conditions is an important task for discovery of few biomarker genes. Significance Analysis of Microarrays (SAM) is a popular statistical approach for identification of DE genes for both small- and large-sample cases. However, it is sensitive to outlying gene expressions and produces low power in presence of outliers. Therefore, in this paper, an attempt is made to robustify the SAM approach using the minimum β-divergence estimators instead of the maximum likelihood estimators of the parameters. We demonstrated the performance of the proposed method in a comparison of some other popular statistical methods such as ANOVA, SAM, LIMMA, KW, EBarrays, GaGa, and BRIDGE using both simulated and real gene expression datasets. We observe that all methods show good and almost equal performance in absence of outliers for the large-sample cases, while in the small-sample cases only three methods (SAM, LIMMA, and proposed) show almost equal and better performance than others with two or more conditions. However, in the presence of outliers, on an average, only the proposed method performs better than others for both small- and large-sample cases with each condition.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>28819626</pmid><doi>10.1155/2017/5310198</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1911-4775</orcidid><orcidid>https://orcid.org/0000-0002-5027-1613</orcidid><orcidid>https://orcid.org/0000-0001-7434-922X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2017-01, Vol.2017 (2017), p.1-18
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5551475
source MEDLINE; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Algorithms
Bioinformatics
Biomarkers
Biometry
Breast cancer
Data analysis
Divergence
DNA microarrays
Gene expression
Gene Expression Profiling - statistics & numerical data
Gene Expression Regulation - genetics
Genes
Hypotheses
Maximum likelihood estimators
Methods
Microarray Analysis - statistics & numerical data
Neural networks
Oligonucleotide Array Sequence Analysis - statistics & numerical data
Outliers (statistics)
Parameter estimation
Researchers
Sample variance
Statistical methods
Statistics
Variance analysis
title Robust Significance Analysis of Microarrays by Minimum β-Divergence Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Significance%20Analysis%20of%20Microarrays%20by%20Minimum%20%CE%B2-Divergence%20Method&rft.jtitle=BioMed%20research%20international&rft.au=Mollah,%20Md.%20Nurul%20Haque&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2017/5310198&rft_dat=%3Cproquest_pubme%3E1926424886%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926424886&rft_id=info:pmid/28819626&rfr_iscdi=true