Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering

A lack of electrical conductivity and structural organization in currently available biomaterial scaffolds limits their utility for generating physiologically representative models of functional cardiac tissue. Here we report on the development of scalable, graphene-functionalized topographies with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2017-06, Vol.53 (53), p.7412-7415
Hauptverfasser: Smith, Alec S T, Yoo, Hyok, Yi, Hyunjung, Ahn, Eun Hyun, Lee, Justin H, Shao, Guozheng, Nagornyak, Ekaterina, Laflamme, Michael A, Murry, Charles E, Kim, Deok-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7415
container_issue 53
container_start_page 7412
container_title Chemical communications (Cambridge, England)
container_volume 53
creator Smith, Alec S T
Yoo, Hyok
Yi, Hyunjung
Ahn, Eun Hyun
Lee, Justin H
Shao, Guozheng
Nagornyak, Ekaterina
Laflamme, Michael A
Murry, Charles E
Kim, Deok-Ho
description A lack of electrical conductivity and structural organization in currently available biomaterial scaffolds limits their utility for generating physiologically representative models of functional cardiac tissue. Here we report on the development of scalable, graphene-functionalized topographies with anisotropic electrical conductivity for engineering the structural and functional phenotypes of macroscopic cardiac tissue constructs. Guided by anisotropic electroconductive and topographic cues, the tissue constructs displayed structural property enhancement in myofibrils and sarcomeres, and exhibited significant increases in the expression of cell-cell coupling and calcium handling proteins, as well as in action potential duration and peak calcium release.
doi_str_mv 10.1039/c7cc01988b
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5548490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925876516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-96e61ba25adffefc4f8cd42f6927f6208646130b775a6142b3357b7d784d39863</originalsourceid><addsrcrecordid>eNqNkUtrFUEQhQdRTIxu_AHSSxFG-_3YCDokUYgkCwV3TU939b0tc7uv3TOB_PvMNTHoSmtTBfVxOFWn614S_JZgZt555T0mRuvxUXdMmOS94Pr748MsTK8YF0fds9Z-4LWI0E-7I6ol45KQ4859Sb6WHrkcUHa59Hs3z1AzBORLDouf0zWgTXX7LWTor07P0fZmrCmg5l2MZQoNxVKRdzUk59GcWlsAQd6kDFBT3jzvnkQ3NXhx30-6b2enX4dP_cXl-efhw0XvhSBzbyRIMjoqXIgRoudR-8BplIaqKCnWcjXM8KiUcJJwOjIm1KiC0jwws95z0r2_090v4w6ChzxXN9l9TTtXb2xxyf69yWlrN-XaivVb3OBV4PW9QC0_F2iz3aXmYZpchrI0S6kimmLDzT9RYqjQSgoi_wMllBgh1cHAmzt0TaS1CvHBPMH2kLQd1DD8SvrjCr_689wH9He07BY-NqRK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912195670</pqid></control><display><type>article</type><title>Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Royal Society of Chemistry E-Journals</source><creator>Smith, Alec S T ; Yoo, Hyok ; Yi, Hyunjung ; Ahn, Eun Hyun ; Lee, Justin H ; Shao, Guozheng ; Nagornyak, Ekaterina ; Laflamme, Michael A ; Murry, Charles E ; Kim, Deok-Ho</creator><creatorcontrib>Smith, Alec S T ; Yoo, Hyok ; Yi, Hyunjung ; Ahn, Eun Hyun ; Lee, Justin H ; Shao, Guozheng ; Nagornyak, Ekaterina ; Laflamme, Michael A ; Murry, Charles E ; Kim, Deok-Ho</creatorcontrib><description>A lack of electrical conductivity and structural organization in currently available biomaterial scaffolds limits their utility for generating physiologically representative models of functional cardiac tissue. Here we report on the development of scalable, graphene-functionalized topographies with anisotropic electrical conductivity for engineering the structural and functional phenotypes of macroscopic cardiac tissue constructs. Guided by anisotropic electroconductive and topographic cues, the tissue constructs displayed structural property enhancement in myofibrils and sarcomeres, and exhibited significant increases in the expression of cell-cell coupling and calcium handling proteins, as well as in action potential duration and peak calcium release.</description><identifier>ISSN: 1359-7345</identifier><identifier>ISSN: 1364-548X</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/c7cc01988b</identifier><identifier>PMID: 28634611</identifier><language>eng</language><publisher>England</publisher><subject>action potentials ; Anisotropy ; biocompatible materials ; Biocompatible Materials - chemistry ; Calcium ; Calcium - chemistry ; Calcium - metabolism ; Cell Proliferation ; chemical reactions ; Electric Conductivity ; Electrical conductivity ; Electrical resistivity ; Graphite - chemistry ; Humans ; Myocytes, Cardiac - chemistry ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - metabolism ; Nanostructure ; Nanostructures - chemistry ; Phenotype ; Polyethylene Glycols - chemistry ; proteins ; sarcomeres ; Scaffolds ; Surgical implants ; Tissue Engineering ; Tissue Scaffolds - chemistry ; Topography</subject><ispartof>Chemical communications (Cambridge, England), 2017-06, Vol.53 (53), p.7412-7415</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-96e61ba25adffefc4f8cd42f6927f6208646130b775a6142b3357b7d784d39863</citedby><cites>FETCH-LOGICAL-c551t-96e61ba25adffefc4f8cd42f6927f6208646130b775a6142b3357b7d784d39863</cites><orcidid>0000-0003-3862-6773 ; 0000-0002-6989-6074 ; 0000-0002-5363-3675 ; 0000-0001-8812-497X ; 0000-0002-0001-8484 ; 0000-0002-0284-2389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28634611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Alec S T</creatorcontrib><creatorcontrib>Yoo, Hyok</creatorcontrib><creatorcontrib>Yi, Hyunjung</creatorcontrib><creatorcontrib>Ahn, Eun Hyun</creatorcontrib><creatorcontrib>Lee, Justin H</creatorcontrib><creatorcontrib>Shao, Guozheng</creatorcontrib><creatorcontrib>Nagornyak, Ekaterina</creatorcontrib><creatorcontrib>Laflamme, Michael A</creatorcontrib><creatorcontrib>Murry, Charles E</creatorcontrib><creatorcontrib>Kim, Deok-Ho</creatorcontrib><title>Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering</title><title>Chemical communications (Cambridge, England)</title><addtitle>Chem Commun (Camb)</addtitle><description>A lack of electrical conductivity and structural organization in currently available biomaterial scaffolds limits their utility for generating physiologically representative models of functional cardiac tissue. Here we report on the development of scalable, graphene-functionalized topographies with anisotropic electrical conductivity for engineering the structural and functional phenotypes of macroscopic cardiac tissue constructs. Guided by anisotropic electroconductive and topographic cues, the tissue constructs displayed structural property enhancement in myofibrils and sarcomeres, and exhibited significant increases in the expression of cell-cell coupling and calcium handling proteins, as well as in action potential duration and peak calcium release.</description><subject>action potentials</subject><subject>Anisotropy</subject><subject>biocompatible materials</subject><subject>Biocompatible Materials - chemistry</subject><subject>Calcium</subject><subject>Calcium - chemistry</subject><subject>Calcium - metabolism</subject><subject>Cell Proliferation</subject><subject>chemical reactions</subject><subject>Electric Conductivity</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Graphite - chemistry</subject><subject>Humans</subject><subject>Myocytes, Cardiac - chemistry</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Phenotype</subject><subject>Polyethylene Glycols - chemistry</subject><subject>proteins</subject><subject>sarcomeres</subject><subject>Scaffolds</subject><subject>Surgical implants</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Topography</subject><issn>1359-7345</issn><issn>1364-548X</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtrFUEQhQdRTIxu_AHSSxFG-_3YCDokUYgkCwV3TU939b0tc7uv3TOB_PvMNTHoSmtTBfVxOFWn614S_JZgZt555T0mRuvxUXdMmOS94Pr748MsTK8YF0fds9Z-4LWI0E-7I6ol45KQ4859Sb6WHrkcUHa59Hs3z1AzBORLDouf0zWgTXX7LWTor07P0fZmrCmg5l2MZQoNxVKRdzUk59GcWlsAQd6kDFBT3jzvnkQ3NXhx30-6b2enX4dP_cXl-efhw0XvhSBzbyRIMjoqXIgRoudR-8BplIaqKCnWcjXM8KiUcJJwOjIm1KiC0jwws95z0r2_090v4w6ChzxXN9l9TTtXb2xxyf69yWlrN-XaivVb3OBV4PW9QC0_F2iz3aXmYZpchrI0S6kimmLDzT9RYqjQSgoi_wMllBgh1cHAmzt0TaS1CvHBPMH2kLQd1DD8SvrjCr_689wH9He07BY-NqRK</recordid><startdate>20170629</startdate><enddate>20170629</enddate><creator>Smith, Alec S T</creator><creator>Yoo, Hyok</creator><creator>Yi, Hyunjung</creator><creator>Ahn, Eun Hyun</creator><creator>Lee, Justin H</creator><creator>Shao, Guozheng</creator><creator>Nagornyak, Ekaterina</creator><creator>Laflamme, Michael A</creator><creator>Murry, Charles E</creator><creator>Kim, Deok-Ho</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3862-6773</orcidid><orcidid>https://orcid.org/0000-0002-6989-6074</orcidid><orcidid>https://orcid.org/0000-0002-5363-3675</orcidid><orcidid>https://orcid.org/0000-0001-8812-497X</orcidid><orcidid>https://orcid.org/0000-0002-0001-8484</orcidid><orcidid>https://orcid.org/0000-0002-0284-2389</orcidid></search><sort><creationdate>20170629</creationdate><title>Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering</title><author>Smith, Alec S T ; Yoo, Hyok ; Yi, Hyunjung ; Ahn, Eun Hyun ; Lee, Justin H ; Shao, Guozheng ; Nagornyak, Ekaterina ; Laflamme, Michael A ; Murry, Charles E ; Kim, Deok-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-96e61ba25adffefc4f8cd42f6927f6208646130b775a6142b3357b7d784d39863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>action potentials</topic><topic>Anisotropy</topic><topic>biocompatible materials</topic><topic>Biocompatible Materials - chemistry</topic><topic>Calcium</topic><topic>Calcium - chemistry</topic><topic>Calcium - metabolism</topic><topic>Cell Proliferation</topic><topic>chemical reactions</topic><topic>Electric Conductivity</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Graphite - chemistry</topic><topic>Humans</topic><topic>Myocytes, Cardiac - chemistry</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Phenotype</topic><topic>Polyethylene Glycols - chemistry</topic><topic>proteins</topic><topic>sarcomeres</topic><topic>Scaffolds</topic><topic>Surgical implants</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Alec S T</creatorcontrib><creatorcontrib>Yoo, Hyok</creatorcontrib><creatorcontrib>Yi, Hyunjung</creatorcontrib><creatorcontrib>Ahn, Eun Hyun</creatorcontrib><creatorcontrib>Lee, Justin H</creatorcontrib><creatorcontrib>Shao, Guozheng</creatorcontrib><creatorcontrib>Nagornyak, Ekaterina</creatorcontrib><creatorcontrib>Laflamme, Michael A</creatorcontrib><creatorcontrib>Murry, Charles E</creatorcontrib><creatorcontrib>Kim, Deok-Ho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical communications (Cambridge, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Alec S T</au><au>Yoo, Hyok</au><au>Yi, Hyunjung</au><au>Ahn, Eun Hyun</au><au>Lee, Justin H</au><au>Shao, Guozheng</au><au>Nagornyak, Ekaterina</au><au>Laflamme, Michael A</au><au>Murry, Charles E</au><au>Kim, Deok-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering</atitle><jtitle>Chemical communications (Cambridge, England)</jtitle><addtitle>Chem Commun (Camb)</addtitle><date>2017-06-29</date><risdate>2017</risdate><volume>53</volume><issue>53</issue><spage>7412</spage><epage>7415</epage><pages>7412-7415</pages><issn>1359-7345</issn><issn>1364-548X</issn><eissn>1364-548X</eissn><abstract>A lack of electrical conductivity and structural organization in currently available biomaterial scaffolds limits their utility for generating physiologically representative models of functional cardiac tissue. Here we report on the development of scalable, graphene-functionalized topographies with anisotropic electrical conductivity for engineering the structural and functional phenotypes of macroscopic cardiac tissue constructs. Guided by anisotropic electroconductive and topographic cues, the tissue constructs displayed structural property enhancement in myofibrils and sarcomeres, and exhibited significant increases in the expression of cell-cell coupling and calcium handling proteins, as well as in action potential duration and peak calcium release.</abstract><cop>England</cop><pmid>28634611</pmid><doi>10.1039/c7cc01988b</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-3862-6773</orcidid><orcidid>https://orcid.org/0000-0002-6989-6074</orcidid><orcidid>https://orcid.org/0000-0002-5363-3675</orcidid><orcidid>https://orcid.org/0000-0001-8812-497X</orcidid><orcidid>https://orcid.org/0000-0002-0001-8484</orcidid><orcidid>https://orcid.org/0000-0002-0284-2389</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-7345
ispartof Chemical communications (Cambridge, England), 2017-06, Vol.53 (53), p.7412-7415
issn 1359-7345
1364-548X
1364-548X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5548490
source MEDLINE; Alma/SFX Local Collection; Royal Society of Chemistry E-Journals
subjects action potentials
Anisotropy
biocompatible materials
Biocompatible Materials - chemistry
Calcium
Calcium - chemistry
Calcium - metabolism
Cell Proliferation
chemical reactions
Electric Conductivity
Electrical conductivity
Electrical resistivity
Graphite - chemistry
Humans
Myocytes, Cardiac - chemistry
Myocytes, Cardiac - cytology
Myocytes, Cardiac - metabolism
Nanostructure
Nanostructures - chemistry
Phenotype
Polyethylene Glycols - chemistry
proteins
sarcomeres
Scaffolds
Surgical implants
Tissue Engineering
Tissue Scaffolds - chemistry
Topography
title Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro-%20and%20nano-patterned%20conductive%20graphene-PEG%20hybrid%20scaffolds%20for%20cardiac%20tissue%20engineering&rft.jtitle=Chemical%20communications%20(Cambridge,%20England)&rft.au=Smith,%20Alec%20S%20T&rft.date=2017-06-29&rft.volume=53&rft.issue=53&rft.spage=7412&rft.epage=7415&rft.pages=7412-7415&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/c7cc01988b&rft_dat=%3Cproquest_pubme%3E1925876516%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912195670&rft_id=info:pmid/28634611&rfr_iscdi=true