Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering
A lack of electrical conductivity and structural organization in currently available biomaterial scaffolds limits their utility for generating physiologically representative models of functional cardiac tissue. Here we report on the development of scalable, graphene-functionalized topographies with...
Gespeichert in:
Veröffentlicht in: | Chemical communications (Cambridge, England) England), 2017-06, Vol.53 (53), p.7412-7415 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7415 |
---|---|
container_issue | 53 |
container_start_page | 7412 |
container_title | Chemical communications (Cambridge, England) |
container_volume | 53 |
creator | Smith, Alec S T Yoo, Hyok Yi, Hyunjung Ahn, Eun Hyun Lee, Justin H Shao, Guozheng Nagornyak, Ekaterina Laflamme, Michael A Murry, Charles E Kim, Deok-Ho |
description | A lack of electrical conductivity and structural organization in currently available biomaterial scaffolds limits their utility for generating physiologically representative models of functional cardiac tissue. Here we report on the development of scalable, graphene-functionalized topographies with anisotropic electrical conductivity for engineering the structural and functional phenotypes of macroscopic cardiac tissue constructs. Guided by anisotropic electroconductive and topographic cues, the tissue constructs displayed structural property enhancement in myofibrils and sarcomeres, and exhibited significant increases in the expression of cell-cell coupling and calcium handling proteins, as well as in action potential duration and peak calcium release. |
doi_str_mv | 10.1039/c7cc01988b |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5548490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925876516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-96e61ba25adffefc4f8cd42f6927f6208646130b775a6142b3357b7d784d39863</originalsourceid><addsrcrecordid>eNqNkUtrFUEQhQdRTIxu_AHSSxFG-_3YCDokUYgkCwV3TU939b0tc7uv3TOB_PvMNTHoSmtTBfVxOFWn614S_JZgZt555T0mRuvxUXdMmOS94Pr748MsTK8YF0fds9Z-4LWI0E-7I6ol45KQ4859Sb6WHrkcUHa59Hs3z1AzBORLDouf0zWgTXX7LWTor07P0fZmrCmg5l2MZQoNxVKRdzUk59GcWlsAQd6kDFBT3jzvnkQ3NXhx30-6b2enX4dP_cXl-efhw0XvhSBzbyRIMjoqXIgRoudR-8BplIaqKCnWcjXM8KiUcJJwOjIm1KiC0jwws95z0r2_090v4w6ChzxXN9l9TTtXb2xxyf69yWlrN-XaivVb3OBV4PW9QC0_F2iz3aXmYZpchrI0S6kimmLDzT9RYqjQSgoi_wMllBgh1cHAmzt0TaS1CvHBPMH2kLQd1DD8SvrjCr_689wH9He07BY-NqRK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912195670</pqid></control><display><type>article</type><title>Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Royal Society of Chemistry E-Journals</source><creator>Smith, Alec S T ; Yoo, Hyok ; Yi, Hyunjung ; Ahn, Eun Hyun ; Lee, Justin H ; Shao, Guozheng ; Nagornyak, Ekaterina ; Laflamme, Michael A ; Murry, Charles E ; Kim, Deok-Ho</creator><creatorcontrib>Smith, Alec S T ; Yoo, Hyok ; Yi, Hyunjung ; Ahn, Eun Hyun ; Lee, Justin H ; Shao, Guozheng ; Nagornyak, Ekaterina ; Laflamme, Michael A ; Murry, Charles E ; Kim, Deok-Ho</creatorcontrib><description>A lack of electrical conductivity and structural organization in currently available biomaterial scaffolds limits their utility for generating physiologically representative models of functional cardiac tissue. Here we report on the development of scalable, graphene-functionalized topographies with anisotropic electrical conductivity for engineering the structural and functional phenotypes of macroscopic cardiac tissue constructs. Guided by anisotropic electroconductive and topographic cues, the tissue constructs displayed structural property enhancement in myofibrils and sarcomeres, and exhibited significant increases in the expression of cell-cell coupling and calcium handling proteins, as well as in action potential duration and peak calcium release.</description><identifier>ISSN: 1359-7345</identifier><identifier>ISSN: 1364-548X</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/c7cc01988b</identifier><identifier>PMID: 28634611</identifier><language>eng</language><publisher>England</publisher><subject>action potentials ; Anisotropy ; biocompatible materials ; Biocompatible Materials - chemistry ; Calcium ; Calcium - chemistry ; Calcium - metabolism ; Cell Proliferation ; chemical reactions ; Electric Conductivity ; Electrical conductivity ; Electrical resistivity ; Graphite - chemistry ; Humans ; Myocytes, Cardiac - chemistry ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - metabolism ; Nanostructure ; Nanostructures - chemistry ; Phenotype ; Polyethylene Glycols - chemistry ; proteins ; sarcomeres ; Scaffolds ; Surgical implants ; Tissue Engineering ; Tissue Scaffolds - chemistry ; Topography</subject><ispartof>Chemical communications (Cambridge, England), 2017-06, Vol.53 (53), p.7412-7415</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-96e61ba25adffefc4f8cd42f6927f6208646130b775a6142b3357b7d784d39863</citedby><cites>FETCH-LOGICAL-c551t-96e61ba25adffefc4f8cd42f6927f6208646130b775a6142b3357b7d784d39863</cites><orcidid>0000-0003-3862-6773 ; 0000-0002-6989-6074 ; 0000-0002-5363-3675 ; 0000-0001-8812-497X ; 0000-0002-0001-8484 ; 0000-0002-0284-2389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28634611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Alec S T</creatorcontrib><creatorcontrib>Yoo, Hyok</creatorcontrib><creatorcontrib>Yi, Hyunjung</creatorcontrib><creatorcontrib>Ahn, Eun Hyun</creatorcontrib><creatorcontrib>Lee, Justin H</creatorcontrib><creatorcontrib>Shao, Guozheng</creatorcontrib><creatorcontrib>Nagornyak, Ekaterina</creatorcontrib><creatorcontrib>Laflamme, Michael A</creatorcontrib><creatorcontrib>Murry, Charles E</creatorcontrib><creatorcontrib>Kim, Deok-Ho</creatorcontrib><title>Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering</title><title>Chemical communications (Cambridge, England)</title><addtitle>Chem Commun (Camb)</addtitle><description>A lack of electrical conductivity and structural organization in currently available biomaterial scaffolds limits their utility for generating physiologically representative models of functional cardiac tissue. Here we report on the development of scalable, graphene-functionalized topographies with anisotropic electrical conductivity for engineering the structural and functional phenotypes of macroscopic cardiac tissue constructs. Guided by anisotropic electroconductive and topographic cues, the tissue constructs displayed structural property enhancement in myofibrils and sarcomeres, and exhibited significant increases in the expression of cell-cell coupling and calcium handling proteins, as well as in action potential duration and peak calcium release.</description><subject>action potentials</subject><subject>Anisotropy</subject><subject>biocompatible materials</subject><subject>Biocompatible Materials - chemistry</subject><subject>Calcium</subject><subject>Calcium - chemistry</subject><subject>Calcium - metabolism</subject><subject>Cell Proliferation</subject><subject>chemical reactions</subject><subject>Electric Conductivity</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Graphite - chemistry</subject><subject>Humans</subject><subject>Myocytes, Cardiac - chemistry</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Phenotype</subject><subject>Polyethylene Glycols - chemistry</subject><subject>proteins</subject><subject>sarcomeres</subject><subject>Scaffolds</subject><subject>Surgical implants</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Topography</subject><issn>1359-7345</issn><issn>1364-548X</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtrFUEQhQdRTIxu_AHSSxFG-_3YCDokUYgkCwV3TU939b0tc7uv3TOB_PvMNTHoSmtTBfVxOFWn614S_JZgZt555T0mRuvxUXdMmOS94Pr748MsTK8YF0fds9Z-4LWI0E-7I6ol45KQ4859Sb6WHrkcUHa59Hs3z1AzBORLDouf0zWgTXX7LWTor07P0fZmrCmg5l2MZQoNxVKRdzUk59GcWlsAQd6kDFBT3jzvnkQ3NXhx30-6b2enX4dP_cXl-efhw0XvhSBzbyRIMjoqXIgRoudR-8BplIaqKCnWcjXM8KiUcJJwOjIm1KiC0jwws95z0r2_090v4w6ChzxXN9l9TTtXb2xxyf69yWlrN-XaivVb3OBV4PW9QC0_F2iz3aXmYZpchrI0S6kimmLDzT9RYqjQSgoi_wMllBgh1cHAmzt0TaS1CvHBPMH2kLQd1DD8SvrjCr_689wH9He07BY-NqRK</recordid><startdate>20170629</startdate><enddate>20170629</enddate><creator>Smith, Alec S T</creator><creator>Yoo, Hyok</creator><creator>Yi, Hyunjung</creator><creator>Ahn, Eun Hyun</creator><creator>Lee, Justin H</creator><creator>Shao, Guozheng</creator><creator>Nagornyak, Ekaterina</creator><creator>Laflamme, Michael A</creator><creator>Murry, Charles E</creator><creator>Kim, Deok-Ho</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3862-6773</orcidid><orcidid>https://orcid.org/0000-0002-6989-6074</orcidid><orcidid>https://orcid.org/0000-0002-5363-3675</orcidid><orcidid>https://orcid.org/0000-0001-8812-497X</orcidid><orcidid>https://orcid.org/0000-0002-0001-8484</orcidid><orcidid>https://orcid.org/0000-0002-0284-2389</orcidid></search><sort><creationdate>20170629</creationdate><title>Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering</title><author>Smith, Alec S T ; Yoo, Hyok ; Yi, Hyunjung ; Ahn, Eun Hyun ; Lee, Justin H ; Shao, Guozheng ; Nagornyak, Ekaterina ; Laflamme, Michael A ; Murry, Charles E ; Kim, Deok-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-96e61ba25adffefc4f8cd42f6927f6208646130b775a6142b3357b7d784d39863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>action potentials</topic><topic>Anisotropy</topic><topic>biocompatible materials</topic><topic>Biocompatible Materials - chemistry</topic><topic>Calcium</topic><topic>Calcium - chemistry</topic><topic>Calcium - metabolism</topic><topic>Cell Proliferation</topic><topic>chemical reactions</topic><topic>Electric Conductivity</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Graphite - chemistry</topic><topic>Humans</topic><topic>Myocytes, Cardiac - chemistry</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Phenotype</topic><topic>Polyethylene Glycols - chemistry</topic><topic>proteins</topic><topic>sarcomeres</topic><topic>Scaffolds</topic><topic>Surgical implants</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Alec S T</creatorcontrib><creatorcontrib>Yoo, Hyok</creatorcontrib><creatorcontrib>Yi, Hyunjung</creatorcontrib><creatorcontrib>Ahn, Eun Hyun</creatorcontrib><creatorcontrib>Lee, Justin H</creatorcontrib><creatorcontrib>Shao, Guozheng</creatorcontrib><creatorcontrib>Nagornyak, Ekaterina</creatorcontrib><creatorcontrib>Laflamme, Michael A</creatorcontrib><creatorcontrib>Murry, Charles E</creatorcontrib><creatorcontrib>Kim, Deok-Ho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical communications (Cambridge, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Alec S T</au><au>Yoo, Hyok</au><au>Yi, Hyunjung</au><au>Ahn, Eun Hyun</au><au>Lee, Justin H</au><au>Shao, Guozheng</au><au>Nagornyak, Ekaterina</au><au>Laflamme, Michael A</au><au>Murry, Charles E</au><au>Kim, Deok-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering</atitle><jtitle>Chemical communications (Cambridge, England)</jtitle><addtitle>Chem Commun (Camb)</addtitle><date>2017-06-29</date><risdate>2017</risdate><volume>53</volume><issue>53</issue><spage>7412</spage><epage>7415</epage><pages>7412-7415</pages><issn>1359-7345</issn><issn>1364-548X</issn><eissn>1364-548X</eissn><abstract>A lack of electrical conductivity and structural organization in currently available biomaterial scaffolds limits their utility for generating physiologically representative models of functional cardiac tissue. Here we report on the development of scalable, graphene-functionalized topographies with anisotropic electrical conductivity for engineering the structural and functional phenotypes of macroscopic cardiac tissue constructs. Guided by anisotropic electroconductive and topographic cues, the tissue constructs displayed structural property enhancement in myofibrils and sarcomeres, and exhibited significant increases in the expression of cell-cell coupling and calcium handling proteins, as well as in action potential duration and peak calcium release.</abstract><cop>England</cop><pmid>28634611</pmid><doi>10.1039/c7cc01988b</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-3862-6773</orcidid><orcidid>https://orcid.org/0000-0002-6989-6074</orcidid><orcidid>https://orcid.org/0000-0002-5363-3675</orcidid><orcidid>https://orcid.org/0000-0001-8812-497X</orcidid><orcidid>https://orcid.org/0000-0002-0001-8484</orcidid><orcidid>https://orcid.org/0000-0002-0284-2389</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-7345 |
ispartof | Chemical communications (Cambridge, England), 2017-06, Vol.53 (53), p.7412-7415 |
issn | 1359-7345 1364-548X 1364-548X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5548490 |
source | MEDLINE; Alma/SFX Local Collection; Royal Society of Chemistry E-Journals |
subjects | action potentials Anisotropy biocompatible materials Biocompatible Materials - chemistry Calcium Calcium - chemistry Calcium - metabolism Cell Proliferation chemical reactions Electric Conductivity Electrical conductivity Electrical resistivity Graphite - chemistry Humans Myocytes, Cardiac - chemistry Myocytes, Cardiac - cytology Myocytes, Cardiac - metabolism Nanostructure Nanostructures - chemistry Phenotype Polyethylene Glycols - chemistry proteins sarcomeres Scaffolds Surgical implants Tissue Engineering Tissue Scaffolds - chemistry Topography |
title | Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro-%20and%20nano-patterned%20conductive%20graphene-PEG%20hybrid%20scaffolds%20for%20cardiac%20tissue%20engineering&rft.jtitle=Chemical%20communications%20(Cambridge,%20England)&rft.au=Smith,%20Alec%20S%20T&rft.date=2017-06-29&rft.volume=53&rft.issue=53&rft.spage=7412&rft.epage=7415&rft.pages=7412-7415&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/c7cc01988b&rft_dat=%3Cproquest_pubme%3E1925876516%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912195670&rft_id=info:pmid/28634611&rfr_iscdi=true |