Nanoscale manipulation of membrane curvature for probing endocytosis in live cells
Nanoscale plasma membrane curvature, generated in a controllable fashion by vertically aligned nanostructure arrays, promotes the accumulation of key endocytic proteins in live cells. Clathrin-mediated endocytosis (CME) involves nanoscale bending and inward budding of the plasma membrane, by which c...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2017-08, Vol.12 (8), p.750-756 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 756 |
---|---|
container_issue | 8 |
container_start_page | 750 |
container_title | Nature nanotechnology |
container_volume | 12 |
creator | Zhao, Wenting Hanson, Lindsey Lou, Hsin-Ya Akamatsu, Matthew Chowdary, Praveen D. Santoro, Francesca Marks, Jessica R. Grassart, Alexandre Drubin, David G. Cui, Yi Cui, Bianxiao |
description | Nanoscale plasma membrane curvature, generated in a controllable fashion by vertically aligned nanostructure arrays, promotes the accumulation of key endocytic proteins in live cells.
Clathrin-mediated endocytosis (CME) involves nanoscale bending and inward budding of the plasma membrane, by which cells regulate both the distribution of membrane proteins and the entry of extracellular species
1
,
2
. Extensive studies have shown that CME proteins actively modulate the plasma membrane curvature
1
,
3
,
4
. However, the reciprocal regulation of how the plasma membrane curvature affects the activities of endocytic proteins is much less explored, despite studies suggesting that membrane curvature itself can trigger biochemical reactions
5
,
6
,
7
,
8
. This gap in our understanding is largely due to technical challenges in precisely controlling the membrane curvature in live cells. In this work, we use patterned nanostructures to generate well-defined membrane curvatures ranging from +50 nm to −500 nm radius of curvature. We find that the positively curved membranes are CME hotspots, and that key CME proteins, clathrin and dynamin, show a strong preference towards positive membrane curvatures with a radius |
doi_str_mv | 10.1038/nnano.2017.98 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5544585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925827444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-a01da3ec072222478f615c6d194a197c0a7b567098e2f9b222b6d249284fc9ff3</originalsourceid><addsrcrecordid>eNptkU1LAzEQhoMofh-9SsDz1iSbNMlFEPELREH0HLLZpEZ2k5rsFvz3plZLBecyA_PMO8O8AJxgNMGoFuch6BAnBGE-kWIL7GNORVXXkm2va8H3wEHO7wgxIgndBXtEMIEZRvvg-bGMZ6M7C3sd_Hzs9OBjgNHB3vZN0sFCM6aFHsZkoYsJzlNsfJhBG9poPoeYfYY-wM4vCmm7Lh-BHae7bI9_8iF4vbl-ubqrHp5u768uHyrDGB8qjXCra2sQJyUoF26KmZm2WFKNJTdI84ZNOZLCEiebwjTTllBJBHVGOlcfgouV7nxsetsaG4akOzVPvtfpU0Xt1d9O8G9qFheKMUqZYEXg7EcgxY_R5kG9xzGFcrPCkjBBOKW0UNWKMinmnKxbb8BILS1Q3xaopQVKisKfbp61pn9_XoDJCsilFWY2baz9V_ELCjmUDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925827444</pqid></control><display><type>article</type><title>Nanoscale manipulation of membrane curvature for probing endocytosis in live cells</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Zhao, Wenting ; Hanson, Lindsey ; Lou, Hsin-Ya ; Akamatsu, Matthew ; Chowdary, Praveen D. ; Santoro, Francesca ; Marks, Jessica R. ; Grassart, Alexandre ; Drubin, David G. ; Cui, Yi ; Cui, Bianxiao</creator><creatorcontrib>Zhao, Wenting ; Hanson, Lindsey ; Lou, Hsin-Ya ; Akamatsu, Matthew ; Chowdary, Praveen D. ; Santoro, Francesca ; Marks, Jessica R. ; Grassart, Alexandre ; Drubin, David G. ; Cui, Yi ; Cui, Bianxiao</creatorcontrib><description>Nanoscale plasma membrane curvature, generated in a controllable fashion by vertically aligned nanostructure arrays, promotes the accumulation of key endocytic proteins in live cells.
Clathrin-mediated endocytosis (CME) involves nanoscale bending and inward budding of the plasma membrane, by which cells regulate both the distribution of membrane proteins and the entry of extracellular species
1
,
2
. Extensive studies have shown that CME proteins actively modulate the plasma membrane curvature
1
,
3
,
4
. However, the reciprocal regulation of how the plasma membrane curvature affects the activities of endocytic proteins is much less explored, despite studies suggesting that membrane curvature itself can trigger biochemical reactions
5
,
6
,
7
,
8
. This gap in our understanding is largely due to technical challenges in precisely controlling the membrane curvature in live cells. In this work, we use patterned nanostructures to generate well-defined membrane curvatures ranging from +50 nm to −500 nm radius of curvature. We find that the positively curved membranes are CME hotspots, and that key CME proteins, clathrin and dynamin, show a strong preference towards positive membrane curvatures with a radius <200 nm. Of ten CME-related proteins we examined, all show preferences for positively curved membrane. In contrast, other membrane-associated proteins and non-CME endocytic protein caveolin1 show no such curvature preference. Therefore, nanostructured substrates constitute a novel tool for investigating curvature-dependent processes in live cells.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2017.98</identifier><identifier>PMID: 28581510</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 142/136 ; 147/135 ; 147/143 ; 147/28 ; 631/61/350/2093 ; 639/925/350/2093 ; Caveolin 1 - metabolism ; Cell Line ; Cell Membrane - metabolism ; Clathrin ; Clathrin - metabolism ; Dynamin ; Dynamins - metabolism ; Endocytosis ; Humans ; letter ; Materials Science ; Membrane proteins ; Membranes ; Nanostructure ; Nanostructures - chemistry ; Nanotechnology ; Nanotechnology and Microengineering ; Plasmas (physics) ; Preferences ; Proteins ; Radius of curvature ; Substrates</subject><ispartof>Nature nanotechnology, 2017-08, Vol.12 (8), p.750-756</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Aug 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-a01da3ec072222478f615c6d194a197c0a7b567098e2f9b222b6d249284fc9ff3</citedby><cites>FETCH-LOGICAL-c557t-a01da3ec072222478f615c6d194a197c0a7b567098e2f9b222b6d249284fc9ff3</cites><orcidid>0000-0002-6143-5185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2017.98$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2017.98$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28581510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Wenting</creatorcontrib><creatorcontrib>Hanson, Lindsey</creatorcontrib><creatorcontrib>Lou, Hsin-Ya</creatorcontrib><creatorcontrib>Akamatsu, Matthew</creatorcontrib><creatorcontrib>Chowdary, Praveen D.</creatorcontrib><creatorcontrib>Santoro, Francesca</creatorcontrib><creatorcontrib>Marks, Jessica R.</creatorcontrib><creatorcontrib>Grassart, Alexandre</creatorcontrib><creatorcontrib>Drubin, David G.</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Cui, Bianxiao</creatorcontrib><title>Nanoscale manipulation of membrane curvature for probing endocytosis in live cells</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Nanoscale plasma membrane curvature, generated in a controllable fashion by vertically aligned nanostructure arrays, promotes the accumulation of key endocytic proteins in live cells.
Clathrin-mediated endocytosis (CME) involves nanoscale bending and inward budding of the plasma membrane, by which cells regulate both the distribution of membrane proteins and the entry of extracellular species
1
,
2
. Extensive studies have shown that CME proteins actively modulate the plasma membrane curvature
1
,
3
,
4
. However, the reciprocal regulation of how the plasma membrane curvature affects the activities of endocytic proteins is much less explored, despite studies suggesting that membrane curvature itself can trigger biochemical reactions
5
,
6
,
7
,
8
. This gap in our understanding is largely due to technical challenges in precisely controlling the membrane curvature in live cells. In this work, we use patterned nanostructures to generate well-defined membrane curvatures ranging from +50 nm to −500 nm radius of curvature. We find that the positively curved membranes are CME hotspots, and that key CME proteins, clathrin and dynamin, show a strong preference towards positive membrane curvatures with a radius <200 nm. Of ten CME-related proteins we examined, all show preferences for positively curved membrane. In contrast, other membrane-associated proteins and non-CME endocytic protein caveolin1 show no such curvature preference. Therefore, nanostructured substrates constitute a novel tool for investigating curvature-dependent processes in live cells.</description><subject>142/126</subject><subject>142/136</subject><subject>147/135</subject><subject>147/143</subject><subject>147/28</subject><subject>631/61/350/2093</subject><subject>639/925/350/2093</subject><subject>Caveolin 1 - metabolism</subject><subject>Cell Line</subject><subject>Cell Membrane - metabolism</subject><subject>Clathrin</subject><subject>Clathrin - metabolism</subject><subject>Dynamin</subject><subject>Dynamins - metabolism</subject><subject>Endocytosis</subject><subject>Humans</subject><subject>letter</subject><subject>Materials Science</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Plasmas (physics)</subject><subject>Preferences</subject><subject>Proteins</subject><subject>Radius of curvature</subject><subject>Substrates</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkU1LAzEQhoMofh-9SsDz1iSbNMlFEPELREH0HLLZpEZ2k5rsFvz3plZLBecyA_PMO8O8AJxgNMGoFuch6BAnBGE-kWIL7GNORVXXkm2va8H3wEHO7wgxIgndBXtEMIEZRvvg-bGMZ6M7C3sd_Hzs9OBjgNHB3vZN0sFCM6aFHsZkoYsJzlNsfJhBG9poPoeYfYY-wM4vCmm7Lh-BHae7bI9_8iF4vbl-ubqrHp5u768uHyrDGB8qjXCra2sQJyUoF26KmZm2WFKNJTdI84ZNOZLCEiebwjTTllBJBHVGOlcfgouV7nxsetsaG4akOzVPvtfpU0Xt1d9O8G9qFheKMUqZYEXg7EcgxY_R5kG9xzGFcrPCkjBBOKW0UNWKMinmnKxbb8BILS1Q3xaopQVKisKfbp61pn9_XoDJCsilFWY2baz9V_ELCjmUDg</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Zhao, Wenting</creator><creator>Hanson, Lindsey</creator><creator>Lou, Hsin-Ya</creator><creator>Akamatsu, Matthew</creator><creator>Chowdary, Praveen D.</creator><creator>Santoro, Francesca</creator><creator>Marks, Jessica R.</creator><creator>Grassart, Alexandre</creator><creator>Drubin, David G.</creator><creator>Cui, Yi</creator><creator>Cui, Bianxiao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6143-5185</orcidid></search><sort><creationdate>20170801</creationdate><title>Nanoscale manipulation of membrane curvature for probing endocytosis in live cells</title><author>Zhao, Wenting ; Hanson, Lindsey ; Lou, Hsin-Ya ; Akamatsu, Matthew ; Chowdary, Praveen D. ; Santoro, Francesca ; Marks, Jessica R. ; Grassart, Alexandre ; Drubin, David G. ; Cui, Yi ; Cui, Bianxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-a01da3ec072222478f615c6d194a197c0a7b567098e2f9b222b6d249284fc9ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>142/126</topic><topic>142/136</topic><topic>147/135</topic><topic>147/143</topic><topic>147/28</topic><topic>631/61/350/2093</topic><topic>639/925/350/2093</topic><topic>Caveolin 1 - metabolism</topic><topic>Cell Line</topic><topic>Cell Membrane - metabolism</topic><topic>Clathrin</topic><topic>Clathrin - metabolism</topic><topic>Dynamin</topic><topic>Dynamins - metabolism</topic><topic>Endocytosis</topic><topic>Humans</topic><topic>letter</topic><topic>Materials Science</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Plasmas (physics)</topic><topic>Preferences</topic><topic>Proteins</topic><topic>Radius of curvature</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wenting</creatorcontrib><creatorcontrib>Hanson, Lindsey</creatorcontrib><creatorcontrib>Lou, Hsin-Ya</creatorcontrib><creatorcontrib>Akamatsu, Matthew</creatorcontrib><creatorcontrib>Chowdary, Praveen D.</creatorcontrib><creatorcontrib>Santoro, Francesca</creatorcontrib><creatorcontrib>Marks, Jessica R.</creatorcontrib><creatorcontrib>Grassart, Alexandre</creatorcontrib><creatorcontrib>Drubin, David G.</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Cui, Bianxiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Wenting</au><au>Hanson, Lindsey</au><au>Lou, Hsin-Ya</au><au>Akamatsu, Matthew</au><au>Chowdary, Praveen D.</au><au>Santoro, Francesca</au><au>Marks, Jessica R.</au><au>Grassart, Alexandre</au><au>Drubin, David G.</au><au>Cui, Yi</au><au>Cui, Bianxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale manipulation of membrane curvature for probing endocytosis in live cells</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>12</volume><issue>8</issue><spage>750</spage><epage>756</epage><pages>750-756</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Nanoscale plasma membrane curvature, generated in a controllable fashion by vertically aligned nanostructure arrays, promotes the accumulation of key endocytic proteins in live cells.
Clathrin-mediated endocytosis (CME) involves nanoscale bending and inward budding of the plasma membrane, by which cells regulate both the distribution of membrane proteins and the entry of extracellular species
1
,
2
. Extensive studies have shown that CME proteins actively modulate the plasma membrane curvature
1
,
3
,
4
. However, the reciprocal regulation of how the plasma membrane curvature affects the activities of endocytic proteins is much less explored, despite studies suggesting that membrane curvature itself can trigger biochemical reactions
5
,
6
,
7
,
8
. This gap in our understanding is largely due to technical challenges in precisely controlling the membrane curvature in live cells. In this work, we use patterned nanostructures to generate well-defined membrane curvatures ranging from +50 nm to −500 nm radius of curvature. We find that the positively curved membranes are CME hotspots, and that key CME proteins, clathrin and dynamin, show a strong preference towards positive membrane curvatures with a radius <200 nm. Of ten CME-related proteins we examined, all show preferences for positively curved membrane. In contrast, other membrane-associated proteins and non-CME endocytic protein caveolin1 show no such curvature preference. Therefore, nanostructured substrates constitute a novel tool for investigating curvature-dependent processes in live cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28581510</pmid><doi>10.1038/nnano.2017.98</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6143-5185</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2017-08, Vol.12 (8), p.750-756 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5544585 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 142/126 142/136 147/135 147/143 147/28 631/61/350/2093 639/925/350/2093 Caveolin 1 - metabolism Cell Line Cell Membrane - metabolism Clathrin Clathrin - metabolism Dynamin Dynamins - metabolism Endocytosis Humans letter Materials Science Membrane proteins Membranes Nanostructure Nanostructures - chemistry Nanotechnology Nanotechnology and Microengineering Plasmas (physics) Preferences Proteins Radius of curvature Substrates |
title | Nanoscale manipulation of membrane curvature for probing endocytosis in live cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20manipulation%20of%20membrane%20curvature%20for%20probing%20endocytosis%20in%20live%20cells&rft.jtitle=Nature%20nanotechnology&rft.au=Zhao,%20Wenting&rft.date=2017-08-01&rft.volume=12&rft.issue=8&rft.spage=750&rft.epage=756&rft.pages=750-756&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2017.98&rft_dat=%3Cproquest_pubme%3E1925827444%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925827444&rft_id=info:pmid/28581510&rfr_iscdi=true |