An Exploration of Latent Structure in Observational Huntington's Disease Studies

Huntington's disease (HD) is a monogenic neurodegenerative disorder characterized by the progressive decay of motor and cognitive abilities accompanied by psychiatric episodes. Tracking and modeling the progression of the multi-faceted clinical symptoms of HD is a challenging problem that has i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA Summits on Translational Science proceedings 2017, Vol.2017, p.92-102
Hauptverfasser: Ghosh, Soumya, Sun, Zhaonan, Li, Ying, Cheng, Yu, Mohan, Amrita, Sampaio, Cristina, Hu, Jianying
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102
container_issue
container_start_page 92
container_title AMIA Summits on Translational Science proceedings
container_volume 2017
creator Ghosh, Soumya
Sun, Zhaonan
Li, Ying
Cheng, Yu
Mohan, Amrita
Sampaio, Cristina
Hu, Jianying
description Huntington's disease (HD) is a monogenic neurodegenerative disorder characterized by the progressive decay of motor and cognitive abilities accompanied by psychiatric episodes. Tracking and modeling the progression of the multi-faceted clinical symptoms of HD is a challenging problem that has important implications for staging of HD patients and the development of improved enrollment criteria for future HD studies and trials. In this paper, we describe the first steps towards this goal. We begin by curating data from four recent observational HD studies, each containing a diverse collection of clinical assessments. The resulting dataset is unprecedented in size and contains data from 19,269 study participants. By analyzing this large dataset, we are able to discover hidden low dimensional structure in the data that correlates well with surrogate measures of HD progression. The discovered structures are promising candidates for future consumption by downstream statistical HD progression models.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5543350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1930476611</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1110-15a916d419ef03255406f6e6a4649e8ab305ffd75d5f79177337aa53fc1eb4ca3</originalsourceid><addsrcrecordid>eNpVkE9Lw0AQxYMottR-BdmbXgKZ7p80F6HUaoVCBfUcJslsXUl36-6m6Lc3aJU6lxl4j_d7zEkynIDkqcgUPz26B8k4hLesHyFUIcV5MphMpyABxDB5nFm2-Ni1zmM0zjKn2Qoj2cieou_q2HlixrJ1Fcjvvy3YsmVno7Gb6OxVYLcmEAbq_V1jKFwkZxrbQOPDHiUvd4vn-TJdre8f5rNVugOALAWJBahGQEE64xMp-6ZakUKhREFTrHgmtW5y2UidF5DnnOeIkusaqBI18lFy85O766otNXVf2WNb7rzZov8sHZryv2LNa7lx-7JHcS6zPuD6EODde0chllsTampbtOS6UELBM5ErBdBbL49Zf5DfN_Iv165xMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930476611</pqid></control><display><type>article</type><title>An Exploration of Latent Structure in Observational Huntington's Disease Studies</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Ghosh, Soumya ; Sun, Zhaonan ; Li, Ying ; Cheng, Yu ; Mohan, Amrita ; Sampaio, Cristina ; Hu, Jianying</creator><creatorcontrib>Ghosh, Soumya ; Sun, Zhaonan ; Li, Ying ; Cheng, Yu ; Mohan, Amrita ; Sampaio, Cristina ; Hu, Jianying</creatorcontrib><description>Huntington's disease (HD) is a monogenic neurodegenerative disorder characterized by the progressive decay of motor and cognitive abilities accompanied by psychiatric episodes. Tracking and modeling the progression of the multi-faceted clinical symptoms of HD is a challenging problem that has important implications for staging of HD patients and the development of improved enrollment criteria for future HD studies and trials. In this paper, we describe the first steps towards this goal. We begin by curating data from four recent observational HD studies, each containing a diverse collection of clinical assessments. The resulting dataset is unprecedented in size and contains data from 19,269 study participants. By analyzing this large dataset, we are able to discover hidden low dimensional structure in the data that correlates well with surrogate measures of HD progression. The discovered structures are promising candidates for future consumption by downstream statistical HD progression models.</description><identifier>ISSN: 2153-4063</identifier><identifier>EISSN: 2153-4063</identifier><identifier>PMID: 28815114</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><ispartof>AMIA Summits on Translational Science proceedings, 2017, Vol.2017, p.92-102</ispartof><rights>2017 AMIA - All rights reserved. 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543350/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543350/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28815114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghosh, Soumya</creatorcontrib><creatorcontrib>Sun, Zhaonan</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Cheng, Yu</creatorcontrib><creatorcontrib>Mohan, Amrita</creatorcontrib><creatorcontrib>Sampaio, Cristina</creatorcontrib><creatorcontrib>Hu, Jianying</creatorcontrib><title>An Exploration of Latent Structure in Observational Huntington's Disease Studies</title><title>AMIA Summits on Translational Science proceedings</title><addtitle>AMIA Jt Summits Transl Sci Proc</addtitle><description>Huntington's disease (HD) is a monogenic neurodegenerative disorder characterized by the progressive decay of motor and cognitive abilities accompanied by psychiatric episodes. Tracking and modeling the progression of the multi-faceted clinical symptoms of HD is a challenging problem that has important implications for staging of HD patients and the development of improved enrollment criteria for future HD studies and trials. In this paper, we describe the first steps towards this goal. We begin by curating data from four recent observational HD studies, each containing a diverse collection of clinical assessments. The resulting dataset is unprecedented in size and contains data from 19,269 study participants. By analyzing this large dataset, we are able to discover hidden low dimensional structure in the data that correlates well with surrogate measures of HD progression. The discovered structures are promising candidates for future consumption by downstream statistical HD progression models.</description><issn>2153-4063</issn><issn>2153-4063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkE9Lw0AQxYMottR-BdmbXgKZ7p80F6HUaoVCBfUcJslsXUl36-6m6Lc3aJU6lxl4j_d7zEkynIDkqcgUPz26B8k4hLesHyFUIcV5MphMpyABxDB5nFm2-Ni1zmM0zjKn2Qoj2cieou_q2HlixrJ1Fcjvvy3YsmVno7Gb6OxVYLcmEAbq_V1jKFwkZxrbQOPDHiUvd4vn-TJdre8f5rNVugOALAWJBahGQEE64xMp-6ZakUKhREFTrHgmtW5y2UidF5DnnOeIkusaqBI18lFy85O766otNXVf2WNb7rzZov8sHZryv2LNa7lx-7JHcS6zPuD6EODde0chllsTampbtOS6UELBM5ErBdBbL49Zf5DfN_Iv165xMg</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Ghosh, Soumya</creator><creator>Sun, Zhaonan</creator><creator>Li, Ying</creator><creator>Cheng, Yu</creator><creator>Mohan, Amrita</creator><creator>Sampaio, Cristina</creator><creator>Hu, Jianying</creator><general>American Medical Informatics Association</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2017</creationdate><title>An Exploration of Latent Structure in Observational Huntington's Disease Studies</title><author>Ghosh, Soumya ; Sun, Zhaonan ; Li, Ying ; Cheng, Yu ; Mohan, Amrita ; Sampaio, Cristina ; Hu, Jianying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1110-15a916d419ef03255406f6e6a4649e8ab305ffd75d5f79177337aa53fc1eb4ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Soumya</creatorcontrib><creatorcontrib>Sun, Zhaonan</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Cheng, Yu</creatorcontrib><creatorcontrib>Mohan, Amrita</creatorcontrib><creatorcontrib>Sampaio, Cristina</creatorcontrib><creatorcontrib>Hu, Jianying</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA Summits on Translational Science proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Soumya</au><au>Sun, Zhaonan</au><au>Li, Ying</au><au>Cheng, Yu</au><au>Mohan, Amrita</au><au>Sampaio, Cristina</au><au>Hu, Jianying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Exploration of Latent Structure in Observational Huntington's Disease Studies</atitle><jtitle>AMIA Summits on Translational Science proceedings</jtitle><addtitle>AMIA Jt Summits Transl Sci Proc</addtitle><date>2017</date><risdate>2017</risdate><volume>2017</volume><spage>92</spage><epage>102</epage><pages>92-102</pages><issn>2153-4063</issn><eissn>2153-4063</eissn><abstract>Huntington's disease (HD) is a monogenic neurodegenerative disorder characterized by the progressive decay of motor and cognitive abilities accompanied by psychiatric episodes. Tracking and modeling the progression of the multi-faceted clinical symptoms of HD is a challenging problem that has important implications for staging of HD patients and the development of improved enrollment criteria for future HD studies and trials. In this paper, we describe the first steps towards this goal. We begin by curating data from four recent observational HD studies, each containing a diverse collection of clinical assessments. The resulting dataset is unprecedented in size and contains data from 19,269 study participants. By analyzing this large dataset, we are able to discover hidden low dimensional structure in the data that correlates well with surrogate measures of HD progression. The discovered structures are promising candidates for future consumption by downstream statistical HD progression models.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>28815114</pmid><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2153-4063
ispartof AMIA Summits on Translational Science proceedings, 2017, Vol.2017, p.92-102
issn 2153-4063
2153-4063
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5543350
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
title An Exploration of Latent Structure in Observational Huntington's Disease Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Exploration%20of%20Latent%20Structure%20in%20Observational%20Huntington's%20Disease%20Studies&rft.jtitle=AMIA%20Summits%20on%20Translational%20Science%20proceedings&rft.au=Ghosh,%20Soumya&rft.date=2017&rft.volume=2017&rft.spage=92&rft.epage=102&rft.pages=92-102&rft.issn=2153-4063&rft.eissn=2153-4063&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E1930476611%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930476611&rft_id=info:pmid/28815114&rfr_iscdi=true