An Exploration of Latent Structure in Observational Huntington's Disease Studies
Huntington's disease (HD) is a monogenic neurodegenerative disorder characterized by the progressive decay of motor and cognitive abilities accompanied by psychiatric episodes. Tracking and modeling the progression of the multi-faceted clinical symptoms of HD is a challenging problem that has i...
Gespeichert in:
Veröffentlicht in: | AMIA Summits on Translational Science proceedings 2017, Vol.2017, p.92-102 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102 |
---|---|
container_issue | |
container_start_page | 92 |
container_title | AMIA Summits on Translational Science proceedings |
container_volume | 2017 |
creator | Ghosh, Soumya Sun, Zhaonan Li, Ying Cheng, Yu Mohan, Amrita Sampaio, Cristina Hu, Jianying |
description | Huntington's disease (HD) is a monogenic neurodegenerative disorder characterized by the progressive decay of motor and cognitive abilities accompanied by psychiatric episodes. Tracking and modeling the progression of the multi-faceted clinical symptoms of HD is a challenging problem that has important implications for staging of HD patients and the development of improved enrollment criteria for future HD studies and trials. In this paper, we describe the first steps towards this goal. We begin by curating data from four recent observational HD studies, each containing a diverse collection of clinical assessments. The resulting dataset is unprecedented in size and contains data from 19,269 study participants. By analyzing this large dataset, we are able to discover hidden low dimensional structure in the data that correlates well with surrogate measures of HD progression. The discovered structures are promising candidates for future consumption by downstream statistical HD progression models. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5543350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1930476611</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1110-15a916d419ef03255406f6e6a4649e8ab305ffd75d5f79177337aa53fc1eb4ca3</originalsourceid><addsrcrecordid>eNpVkE9Lw0AQxYMottR-BdmbXgKZ7p80F6HUaoVCBfUcJslsXUl36-6m6Lc3aJU6lxl4j_d7zEkynIDkqcgUPz26B8k4hLesHyFUIcV5MphMpyABxDB5nFm2-Ni1zmM0zjKn2Qoj2cieou_q2HlixrJ1Fcjvvy3YsmVno7Gb6OxVYLcmEAbq_V1jKFwkZxrbQOPDHiUvd4vn-TJdre8f5rNVugOALAWJBahGQEE64xMp-6ZakUKhREFTrHgmtW5y2UidF5DnnOeIkusaqBI18lFy85O766otNXVf2WNb7rzZov8sHZryv2LNa7lx-7JHcS6zPuD6EODde0chllsTampbtOS6UELBM5ErBdBbL49Zf5DfN_Iv165xMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930476611</pqid></control><display><type>article</type><title>An Exploration of Latent Structure in Observational Huntington's Disease Studies</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Ghosh, Soumya ; Sun, Zhaonan ; Li, Ying ; Cheng, Yu ; Mohan, Amrita ; Sampaio, Cristina ; Hu, Jianying</creator><creatorcontrib>Ghosh, Soumya ; Sun, Zhaonan ; Li, Ying ; Cheng, Yu ; Mohan, Amrita ; Sampaio, Cristina ; Hu, Jianying</creatorcontrib><description>Huntington's disease (HD) is a monogenic neurodegenerative disorder characterized by the progressive decay of motor and cognitive abilities accompanied by psychiatric episodes. Tracking and modeling the progression of the multi-faceted clinical symptoms of HD is a challenging problem that has important implications for staging of HD patients and the development of improved enrollment criteria for future HD studies and trials. In this paper, we describe the first steps towards this goal. We begin by curating data from four recent observational HD studies, each containing a diverse collection of clinical assessments. The resulting dataset is unprecedented in size and contains data from 19,269 study participants. By analyzing this large dataset, we are able to discover hidden low dimensional structure in the data that correlates well with surrogate measures of HD progression. The discovered structures are promising candidates for future consumption by downstream statistical HD progression models.</description><identifier>ISSN: 2153-4063</identifier><identifier>EISSN: 2153-4063</identifier><identifier>PMID: 28815114</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><ispartof>AMIA Summits on Translational Science proceedings, 2017, Vol.2017, p.92-102</ispartof><rights>2017 AMIA - All rights reserved. 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543350/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543350/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28815114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghosh, Soumya</creatorcontrib><creatorcontrib>Sun, Zhaonan</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Cheng, Yu</creatorcontrib><creatorcontrib>Mohan, Amrita</creatorcontrib><creatorcontrib>Sampaio, Cristina</creatorcontrib><creatorcontrib>Hu, Jianying</creatorcontrib><title>An Exploration of Latent Structure in Observational Huntington's Disease Studies</title><title>AMIA Summits on Translational Science proceedings</title><addtitle>AMIA Jt Summits Transl Sci Proc</addtitle><description>Huntington's disease (HD) is a monogenic neurodegenerative disorder characterized by the progressive decay of motor and cognitive abilities accompanied by psychiatric episodes. Tracking and modeling the progression of the multi-faceted clinical symptoms of HD is a challenging problem that has important implications for staging of HD patients and the development of improved enrollment criteria for future HD studies and trials. In this paper, we describe the first steps towards this goal. We begin by curating data from four recent observational HD studies, each containing a diverse collection of clinical assessments. The resulting dataset is unprecedented in size and contains data from 19,269 study participants. By analyzing this large dataset, we are able to discover hidden low dimensional structure in the data that correlates well with surrogate measures of HD progression. The discovered structures are promising candidates for future consumption by downstream statistical HD progression models.</description><issn>2153-4063</issn><issn>2153-4063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkE9Lw0AQxYMottR-BdmbXgKZ7p80F6HUaoVCBfUcJslsXUl36-6m6Lc3aJU6lxl4j_d7zEkynIDkqcgUPz26B8k4hLesHyFUIcV5MphMpyABxDB5nFm2-Ni1zmM0zjKn2Qoj2cieou_q2HlixrJ1Fcjvvy3YsmVno7Gb6OxVYLcmEAbq_V1jKFwkZxrbQOPDHiUvd4vn-TJdre8f5rNVugOALAWJBahGQEE64xMp-6ZakUKhREFTrHgmtW5y2UidF5DnnOeIkusaqBI18lFy85O766otNXVf2WNb7rzZov8sHZryv2LNa7lx-7JHcS6zPuD6EODde0chllsTampbtOS6UELBM5ErBdBbL49Zf5DfN_Iv165xMg</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Ghosh, Soumya</creator><creator>Sun, Zhaonan</creator><creator>Li, Ying</creator><creator>Cheng, Yu</creator><creator>Mohan, Amrita</creator><creator>Sampaio, Cristina</creator><creator>Hu, Jianying</creator><general>American Medical Informatics Association</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2017</creationdate><title>An Exploration of Latent Structure in Observational Huntington's Disease Studies</title><author>Ghosh, Soumya ; Sun, Zhaonan ; Li, Ying ; Cheng, Yu ; Mohan, Amrita ; Sampaio, Cristina ; Hu, Jianying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1110-15a916d419ef03255406f6e6a4649e8ab305ffd75d5f79177337aa53fc1eb4ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Soumya</creatorcontrib><creatorcontrib>Sun, Zhaonan</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Cheng, Yu</creatorcontrib><creatorcontrib>Mohan, Amrita</creatorcontrib><creatorcontrib>Sampaio, Cristina</creatorcontrib><creatorcontrib>Hu, Jianying</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA Summits on Translational Science proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Soumya</au><au>Sun, Zhaonan</au><au>Li, Ying</au><au>Cheng, Yu</au><au>Mohan, Amrita</au><au>Sampaio, Cristina</au><au>Hu, Jianying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Exploration of Latent Structure in Observational Huntington's Disease Studies</atitle><jtitle>AMIA Summits on Translational Science proceedings</jtitle><addtitle>AMIA Jt Summits Transl Sci Proc</addtitle><date>2017</date><risdate>2017</risdate><volume>2017</volume><spage>92</spage><epage>102</epage><pages>92-102</pages><issn>2153-4063</issn><eissn>2153-4063</eissn><abstract>Huntington's disease (HD) is a monogenic neurodegenerative disorder characterized by the progressive decay of motor and cognitive abilities accompanied by psychiatric episodes. Tracking and modeling the progression of the multi-faceted clinical symptoms of HD is a challenging problem that has important implications for staging of HD patients and the development of improved enrollment criteria for future HD studies and trials. In this paper, we describe the first steps towards this goal. We begin by curating data from four recent observational HD studies, each containing a diverse collection of clinical assessments. The resulting dataset is unprecedented in size and contains data from 19,269 study participants. By analyzing this large dataset, we are able to discover hidden low dimensional structure in the data that correlates well with surrogate measures of HD progression. The discovered structures are promising candidates for future consumption by downstream statistical HD progression models.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>28815114</pmid><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2153-4063 |
ispartof | AMIA Summits on Translational Science proceedings, 2017, Vol.2017, p.92-102 |
issn | 2153-4063 2153-4063 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5543350 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
title | An Exploration of Latent Structure in Observational Huntington's Disease Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Exploration%20of%20Latent%20Structure%20in%20Observational%20Huntington's%20Disease%20Studies&rft.jtitle=AMIA%20Summits%20on%20Translational%20Science%20proceedings&rft.au=Ghosh,%20Soumya&rft.date=2017&rft.volume=2017&rft.spage=92&rft.epage=102&rft.pages=92-102&rft.issn=2153-4063&rft.eissn=2153-4063&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E1930476611%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930476611&rft_id=info:pmid/28815114&rfr_iscdi=true |