Circulating fibrocyte mobilization in negative pressure wound therapy
Non‐healing diabetic wounds are difficult to treat. They also create heavy financial burdens for both patients and society. Negative pressure wound therapy (NPWT) has been adopted to treat intractable wounds and has proved to be effective. However, the mechanisms that underlie the effects of this tr...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2017-08, Vol.21 (8), p.1513-1522 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1522 |
---|---|
container_issue | 8 |
container_start_page | 1513 |
container_title | Journal of cellular and molecular medicine |
container_volume | 21 |
creator | Chen, Dezhi Zhao, Yong Li, Zonghuan Shou, Kangquan Zheng, Xun Li, Pengcheng Qi, Baiwen Yu, Aixi |
description | Non‐healing diabetic wounds are difficult to treat. They also create heavy financial burdens for both patients and society. Negative pressure wound therapy (NPWT) has been adopted to treat intractable wounds and has proved to be effective. However, the mechanisms that underlie the effects of this treatment are not entirely understood. Circulating fibrocytes are unique haematopoietic‐derived stem cells that have been reported to play a pivotal role in wound healing. Here, we have investigated the effect of NPWT on fibrocyte mobilization and the role of fibrocyte mobilization in the healing of diabetic wounds during NPWT. We show that the NPWT group exhibited 2.6‐fold to 12.1‐fold greater numbers of tail vein‐injected PKH‐26‐labelled fibrocytes in the diabetic wound sites compared with the control group. We also demonstrate that the full‐thickness skin wounds treated with NPWT exhibit significantly reduced mRNA and protein expression, blood vessel density and proliferating cells when exogenous fibrocyte mobilization is inhibited. We speculate that systemic mobilization of fibrocytes during NPWT may be a mechanism for healing intractable wounds in a diabetic rat model experiment and that enhancement of cell mobilization may represent a potential treatment idea for intractable wound healing across all fields of surgery. |
doi_str_mv | 10.1111/jcmm.13080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5542905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1869968083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5140-e093dfddc2737d65d5df410403fa8400f1eb1433db4170191cff7c3344a172343</originalsourceid><addsrcrecordid>eNp9kV1LIzEUhsOiaHW92R-wDHizCNWcSaaT3AhL0d2Vijfrdcjko6bMJN1kpqX--o22inphOJDDycPDCS9C3wCfQz4XC9V150Aww1_QCCpWjikndG_XAyPsEB2ltMCYTIDwA3RYshIg1whdTV1UQyt75-eFdU0MatOboguNa91jHgdfOF94M8_9yhTLaFIaoinWYfC66B9MlMvNV7RvZZvMye4-RvfXV3-nv8ezu19_pj9nY1UBxWODOdFWa1XWpNaTSlfaUsAUEysZxdiCaYASohsKNQYOytpaEUKphLoklByjy613OTSd0cr4PspWLKPrZNyIIJ14_-Ldg5iHlagqWnJcZcGPnSCGf4NJvehcUqZtpTdhSALYhPMJw4xk9PQDughD9Pl7AnhZMVwSXmfqbEupGFKKxr4uA1g8pSOe0hHP6WT4-9v1X9GXODIAW2DtWrP5RCVupre3W-l_MOqauQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925802397</pqid></control><display><type>article</type><title>Circulating fibrocyte mobilization in negative pressure wound therapy</title><source>MEDLINE</source><source>Wiley Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><creator>Chen, Dezhi ; Zhao, Yong ; Li, Zonghuan ; Shou, Kangquan ; Zheng, Xun ; Li, Pengcheng ; Qi, Baiwen ; Yu, Aixi</creator><creatorcontrib>Chen, Dezhi ; Zhao, Yong ; Li, Zonghuan ; Shou, Kangquan ; Zheng, Xun ; Li, Pengcheng ; Qi, Baiwen ; Yu, Aixi</creatorcontrib><description>Non‐healing diabetic wounds are difficult to treat. They also create heavy financial burdens for both patients and society. Negative pressure wound therapy (NPWT) has been adopted to treat intractable wounds and has proved to be effective. However, the mechanisms that underlie the effects of this treatment are not entirely understood. Circulating fibrocytes are unique haematopoietic‐derived stem cells that have been reported to play a pivotal role in wound healing. Here, we have investigated the effect of NPWT on fibrocyte mobilization and the role of fibrocyte mobilization in the healing of diabetic wounds during NPWT. We show that the NPWT group exhibited 2.6‐fold to 12.1‐fold greater numbers of tail vein‐injected PKH‐26‐labelled fibrocytes in the diabetic wound sites compared with the control group. We also demonstrate that the full‐thickness skin wounds treated with NPWT exhibit significantly reduced mRNA and protein expression, blood vessel density and proliferating cells when exogenous fibrocyte mobilization is inhibited. We speculate that systemic mobilization of fibrocytes during NPWT may be a mechanism for healing intractable wounds in a diabetic rat model experiment and that enhancement of cell mobilization may represent a potential treatment idea for intractable wound healing across all fields of surgery.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.13080</identifier><identifier>PMID: 28211211</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Animals ; Chemokine CXCL12 - genetics ; Chemokine CXCL12 - metabolism ; circulating fibrocyte ; Collagen Type I - genetics ; Collagen Type I - metabolism ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Experimental - complications ; Diabetes Mellitus, Experimental - genetics ; Diabetes Mellitus, Experimental - metabolism ; Diabetes Mellitus, Experimental - therapy ; diabetic wound ; Fluorescent Dyes - chemistry ; Gene expression ; Gene Expression Regulation ; Hematopoietic stem cells ; Male ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - metabolism ; mRNA ; Negative-Pressure Wound Therapy ; Organic Chemicals - chemistry ; Original ; Platelet-Derived Growth Factor - genetics ; Platelet-Derived Growth Factor - metabolism ; Pressure ; Pressure ulcers ; Rats ; Rats, Sprague-Dawley ; Signal Transduction ; Skin ; Staining and Labeling - methods ; Stem cell transplantation ; Stem cells ; Streptozocin ; Surgery ; Therapeutic applications ; Transforming Growth Factor beta1 - genetics ; Transforming Growth Factor beta1 - metabolism ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism ; Wound Healing ; Wounds and Injuries - complications ; Wounds and Injuries - genetics ; Wounds and Injuries - metabolism ; Wounds and Injuries - therapy</subject><ispartof>Journal of cellular and molecular medicine, 2017-08, Vol.21 (8), p.1513-1522</ispartof><rights>2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5140-e093dfddc2737d65d5df410403fa8400f1eb1433db4170191cff7c3344a172343</citedby><cites>FETCH-LOGICAL-c5140-e093dfddc2737d65d5df410403fa8400f1eb1433db4170191cff7c3344a172343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5542905/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5542905/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28211211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Dezhi</creatorcontrib><creatorcontrib>Zhao, Yong</creatorcontrib><creatorcontrib>Li, Zonghuan</creatorcontrib><creatorcontrib>Shou, Kangquan</creatorcontrib><creatorcontrib>Zheng, Xun</creatorcontrib><creatorcontrib>Li, Pengcheng</creatorcontrib><creatorcontrib>Qi, Baiwen</creatorcontrib><creatorcontrib>Yu, Aixi</creatorcontrib><title>Circulating fibrocyte mobilization in negative pressure wound therapy</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Non‐healing diabetic wounds are difficult to treat. They also create heavy financial burdens for both patients and society. Negative pressure wound therapy (NPWT) has been adopted to treat intractable wounds and has proved to be effective. However, the mechanisms that underlie the effects of this treatment are not entirely understood. Circulating fibrocytes are unique haematopoietic‐derived stem cells that have been reported to play a pivotal role in wound healing. Here, we have investigated the effect of NPWT on fibrocyte mobilization and the role of fibrocyte mobilization in the healing of diabetic wounds during NPWT. We show that the NPWT group exhibited 2.6‐fold to 12.1‐fold greater numbers of tail vein‐injected PKH‐26‐labelled fibrocytes in the diabetic wound sites compared with the control group. We also demonstrate that the full‐thickness skin wounds treated with NPWT exhibit significantly reduced mRNA and protein expression, blood vessel density and proliferating cells when exogenous fibrocyte mobilization is inhibited. We speculate that systemic mobilization of fibrocytes during NPWT may be a mechanism for healing intractable wounds in a diabetic rat model experiment and that enhancement of cell mobilization may represent a potential treatment idea for intractable wound healing across all fields of surgery.</description><subject>Animals</subject><subject>Chemokine CXCL12 - genetics</subject><subject>Chemokine CXCL12 - metabolism</subject><subject>circulating fibrocyte</subject><subject>Collagen Type I - genetics</subject><subject>Collagen Type I - metabolism</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Experimental - complications</subject><subject>Diabetes Mellitus, Experimental - genetics</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes Mellitus, Experimental - therapy</subject><subject>diabetic wound</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Hematopoietic stem cells</subject><subject>Male</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>mRNA</subject><subject>Negative-Pressure Wound Therapy</subject><subject>Organic Chemicals - chemistry</subject><subject>Original</subject><subject>Platelet-Derived Growth Factor - genetics</subject><subject>Platelet-Derived Growth Factor - metabolism</subject><subject>Pressure</subject><subject>Pressure ulcers</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Signal Transduction</subject><subject>Skin</subject><subject>Staining and Labeling - methods</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Streptozocin</subject><subject>Surgery</subject><subject>Therapeutic applications</subject><subject>Transforming Growth Factor beta1 - genetics</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Wound Healing</subject><subject>Wounds and Injuries - complications</subject><subject>Wounds and Injuries - genetics</subject><subject>Wounds and Injuries - metabolism</subject><subject>Wounds and Injuries - therapy</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV1LIzEUhsOiaHW92R-wDHizCNWcSaaT3AhL0d2Vijfrdcjko6bMJN1kpqX--o22inphOJDDycPDCS9C3wCfQz4XC9V150Aww1_QCCpWjikndG_XAyPsEB2ltMCYTIDwA3RYshIg1whdTV1UQyt75-eFdU0MatOboguNa91jHgdfOF94M8_9yhTLaFIaoinWYfC66B9MlMvNV7RvZZvMye4-RvfXV3-nv8ezu19_pj9nY1UBxWODOdFWa1XWpNaTSlfaUsAUEysZxdiCaYASohsKNQYOytpaEUKphLoklByjy613OTSd0cr4PspWLKPrZNyIIJ14_-Ldg5iHlagqWnJcZcGPnSCGf4NJvehcUqZtpTdhSALYhPMJw4xk9PQDughD9Pl7AnhZMVwSXmfqbEupGFKKxr4uA1g8pSOe0hHP6WT4-9v1X9GXODIAW2DtWrP5RCVupre3W-l_MOqauQ</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Chen, Dezhi</creator><creator>Zhao, Yong</creator><creator>Li, Zonghuan</creator><creator>Shou, Kangquan</creator><creator>Zheng, Xun</creator><creator>Li, Pengcheng</creator><creator>Qi, Baiwen</creator><creator>Yu, Aixi</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201708</creationdate><title>Circulating fibrocyte mobilization in negative pressure wound therapy</title><author>Chen, Dezhi ; Zhao, Yong ; Li, Zonghuan ; Shou, Kangquan ; Zheng, Xun ; Li, Pengcheng ; Qi, Baiwen ; Yu, Aixi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5140-e093dfddc2737d65d5df410403fa8400f1eb1433db4170191cff7c3344a172343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Chemokine CXCL12 - genetics</topic><topic>Chemokine CXCL12 - metabolism</topic><topic>circulating fibrocyte</topic><topic>Collagen Type I - genetics</topic><topic>Collagen Type I - metabolism</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Experimental - complications</topic><topic>Diabetes Mellitus, Experimental - genetics</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes Mellitus, Experimental - therapy</topic><topic>diabetic wound</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Hematopoietic stem cells</topic><topic>Male</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>mRNA</topic><topic>Negative-Pressure Wound Therapy</topic><topic>Organic Chemicals - chemistry</topic><topic>Original</topic><topic>Platelet-Derived Growth Factor - genetics</topic><topic>Platelet-Derived Growth Factor - metabolism</topic><topic>Pressure</topic><topic>Pressure ulcers</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Signal Transduction</topic><topic>Skin</topic><topic>Staining and Labeling - methods</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Streptozocin</topic><topic>Surgery</topic><topic>Therapeutic applications</topic><topic>Transforming Growth Factor beta1 - genetics</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Wound Healing</topic><topic>Wounds and Injuries - complications</topic><topic>Wounds and Injuries - genetics</topic><topic>Wounds and Injuries - metabolism</topic><topic>Wounds and Injuries - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Dezhi</creatorcontrib><creatorcontrib>Zhao, Yong</creatorcontrib><creatorcontrib>Li, Zonghuan</creatorcontrib><creatorcontrib>Shou, Kangquan</creatorcontrib><creatorcontrib>Zheng, Xun</creatorcontrib><creatorcontrib>Li, Pengcheng</creatorcontrib><creatorcontrib>Qi, Baiwen</creatorcontrib><creatorcontrib>Yu, Aixi</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Dezhi</au><au>Zhao, Yong</au><au>Li, Zonghuan</au><au>Shou, Kangquan</au><au>Zheng, Xun</au><au>Li, Pengcheng</au><au>Qi, Baiwen</au><au>Yu, Aixi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circulating fibrocyte mobilization in negative pressure wound therapy</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2017-08</date><risdate>2017</risdate><volume>21</volume><issue>8</issue><spage>1513</spage><epage>1522</epage><pages>1513-1522</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Non‐healing diabetic wounds are difficult to treat. They also create heavy financial burdens for both patients and society. Negative pressure wound therapy (NPWT) has been adopted to treat intractable wounds and has proved to be effective. However, the mechanisms that underlie the effects of this treatment are not entirely understood. Circulating fibrocytes are unique haematopoietic‐derived stem cells that have been reported to play a pivotal role in wound healing. Here, we have investigated the effect of NPWT on fibrocyte mobilization and the role of fibrocyte mobilization in the healing of diabetic wounds during NPWT. We show that the NPWT group exhibited 2.6‐fold to 12.1‐fold greater numbers of tail vein‐injected PKH‐26‐labelled fibrocytes in the diabetic wound sites compared with the control group. We also demonstrate that the full‐thickness skin wounds treated with NPWT exhibit significantly reduced mRNA and protein expression, blood vessel density and proliferating cells when exogenous fibrocyte mobilization is inhibited. We speculate that systemic mobilization of fibrocytes during NPWT may be a mechanism for healing intractable wounds in a diabetic rat model experiment and that enhancement of cell mobilization may represent a potential treatment idea for intractable wound healing across all fields of surgery.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>28211211</pmid><doi>10.1111/jcmm.13080</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2017-08, Vol.21 (8), p.1513-1522 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5542905 |
source | MEDLINE; Wiley Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; PubMed Central |
subjects | Animals Chemokine CXCL12 - genetics Chemokine CXCL12 - metabolism circulating fibrocyte Collagen Type I - genetics Collagen Type I - metabolism Diabetes Diabetes mellitus Diabetes Mellitus, Experimental - complications Diabetes Mellitus, Experimental - genetics Diabetes Mellitus, Experimental - metabolism Diabetes Mellitus, Experimental - therapy diabetic wound Fluorescent Dyes - chemistry Gene expression Gene Expression Regulation Hematopoietic stem cells Male Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - metabolism mRNA Negative-Pressure Wound Therapy Organic Chemicals - chemistry Original Platelet-Derived Growth Factor - genetics Platelet-Derived Growth Factor - metabolism Pressure Pressure ulcers Rats Rats, Sprague-Dawley Signal Transduction Skin Staining and Labeling - methods Stem cell transplantation Stem cells Streptozocin Surgery Therapeutic applications Transforming Growth Factor beta1 - genetics Transforming Growth Factor beta1 - metabolism Vascular Endothelial Growth Factor A - genetics Vascular Endothelial Growth Factor A - metabolism Wound Healing Wounds and Injuries - complications Wounds and Injuries - genetics Wounds and Injuries - metabolism Wounds and Injuries - therapy |
title | Circulating fibrocyte mobilization in negative pressure wound therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circulating%20fibrocyte%20mobilization%20in%20negative%20pressure%20wound%20therapy&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Chen,%20Dezhi&rft.date=2017-08&rft.volume=21&rft.issue=8&rft.spage=1513&rft.epage=1522&rft.pages=1513-1522&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.13080&rft_dat=%3Cproquest_pubme%3E1869968083%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925802397&rft_id=info:pmid/28211211&rfr_iscdi=true |