Circulating fibrocyte mobilization in negative pressure wound therapy

Non‐healing diabetic wounds are difficult to treat. They also create heavy financial burdens for both patients and society. Negative pressure wound therapy (NPWT) has been adopted to treat intractable wounds and has proved to be effective. However, the mechanisms that underlie the effects of this tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2017-08, Vol.21 (8), p.1513-1522
Hauptverfasser: Chen, Dezhi, Zhao, Yong, Li, Zonghuan, Shou, Kangquan, Zheng, Xun, Li, Pengcheng, Qi, Baiwen, Yu, Aixi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1522
container_issue 8
container_start_page 1513
container_title Journal of cellular and molecular medicine
container_volume 21
creator Chen, Dezhi
Zhao, Yong
Li, Zonghuan
Shou, Kangquan
Zheng, Xun
Li, Pengcheng
Qi, Baiwen
Yu, Aixi
description Non‐healing diabetic wounds are difficult to treat. They also create heavy financial burdens for both patients and society. Negative pressure wound therapy (NPWT) has been adopted to treat intractable wounds and has proved to be effective. However, the mechanisms that underlie the effects of this treatment are not entirely understood. Circulating fibrocytes are unique haematopoietic‐derived stem cells that have been reported to play a pivotal role in wound healing. Here, we have investigated the effect of NPWT on fibrocyte mobilization and the role of fibrocyte mobilization in the healing of diabetic wounds during NPWT. We show that the NPWT group exhibited 2.6‐fold to 12.1‐fold greater numbers of tail vein‐injected PKH‐26‐labelled fibrocytes in the diabetic wound sites compared with the control group. We also demonstrate that the full‐thickness skin wounds treated with NPWT exhibit significantly reduced mRNA and protein expression, blood vessel density and proliferating cells when exogenous fibrocyte mobilization is inhibited. We speculate that systemic mobilization of fibrocytes during NPWT may be a mechanism for healing intractable wounds in a diabetic rat model experiment and that enhancement of cell mobilization may represent a potential treatment idea for intractable wound healing across all fields of surgery.
doi_str_mv 10.1111/jcmm.13080
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5542905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1869968083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5140-e093dfddc2737d65d5df410403fa8400f1eb1433db4170191cff7c3344a172343</originalsourceid><addsrcrecordid>eNp9kV1LIzEUhsOiaHW92R-wDHizCNWcSaaT3AhL0d2Vijfrdcjko6bMJN1kpqX--o22inphOJDDycPDCS9C3wCfQz4XC9V150Aww1_QCCpWjikndG_XAyPsEB2ltMCYTIDwA3RYshIg1whdTV1UQyt75-eFdU0MatOboguNa91jHgdfOF94M8_9yhTLaFIaoinWYfC66B9MlMvNV7RvZZvMye4-RvfXV3-nv8ezu19_pj9nY1UBxWODOdFWa1XWpNaTSlfaUsAUEysZxdiCaYASohsKNQYOytpaEUKphLoklByjy613OTSd0cr4PspWLKPrZNyIIJ14_-Ldg5iHlagqWnJcZcGPnSCGf4NJvehcUqZtpTdhSALYhPMJw4xk9PQDughD9Pl7AnhZMVwSXmfqbEupGFKKxr4uA1g8pSOe0hHP6WT4-9v1X9GXODIAW2DtWrP5RCVupre3W-l_MOqauQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925802397</pqid></control><display><type>article</type><title>Circulating fibrocyte mobilization in negative pressure wound therapy</title><source>MEDLINE</source><source>Wiley Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><creator>Chen, Dezhi ; Zhao, Yong ; Li, Zonghuan ; Shou, Kangquan ; Zheng, Xun ; Li, Pengcheng ; Qi, Baiwen ; Yu, Aixi</creator><creatorcontrib>Chen, Dezhi ; Zhao, Yong ; Li, Zonghuan ; Shou, Kangquan ; Zheng, Xun ; Li, Pengcheng ; Qi, Baiwen ; Yu, Aixi</creatorcontrib><description>Non‐healing diabetic wounds are difficult to treat. They also create heavy financial burdens for both patients and society. Negative pressure wound therapy (NPWT) has been adopted to treat intractable wounds and has proved to be effective. However, the mechanisms that underlie the effects of this treatment are not entirely understood. Circulating fibrocytes are unique haematopoietic‐derived stem cells that have been reported to play a pivotal role in wound healing. Here, we have investigated the effect of NPWT on fibrocyte mobilization and the role of fibrocyte mobilization in the healing of diabetic wounds during NPWT. We show that the NPWT group exhibited 2.6‐fold to 12.1‐fold greater numbers of tail vein‐injected PKH‐26‐labelled fibrocytes in the diabetic wound sites compared with the control group. We also demonstrate that the full‐thickness skin wounds treated with NPWT exhibit significantly reduced mRNA and protein expression, blood vessel density and proliferating cells when exogenous fibrocyte mobilization is inhibited. We speculate that systemic mobilization of fibrocytes during NPWT may be a mechanism for healing intractable wounds in a diabetic rat model experiment and that enhancement of cell mobilization may represent a potential treatment idea for intractable wound healing across all fields of surgery.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.13080</identifier><identifier>PMID: 28211211</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Chemokine CXCL12 - genetics ; Chemokine CXCL12 - metabolism ; circulating fibrocyte ; Collagen Type I - genetics ; Collagen Type I - metabolism ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Experimental - complications ; Diabetes Mellitus, Experimental - genetics ; Diabetes Mellitus, Experimental - metabolism ; Diabetes Mellitus, Experimental - therapy ; diabetic wound ; Fluorescent Dyes - chemistry ; Gene expression ; Gene Expression Regulation ; Hematopoietic stem cells ; Male ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - metabolism ; mRNA ; Negative-Pressure Wound Therapy ; Organic Chemicals - chemistry ; Original ; Platelet-Derived Growth Factor - genetics ; Platelet-Derived Growth Factor - metabolism ; Pressure ; Pressure ulcers ; Rats ; Rats, Sprague-Dawley ; Signal Transduction ; Skin ; Staining and Labeling - methods ; Stem cell transplantation ; Stem cells ; Streptozocin ; Surgery ; Therapeutic applications ; Transforming Growth Factor beta1 - genetics ; Transforming Growth Factor beta1 - metabolism ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism ; Wound Healing ; Wounds and Injuries - complications ; Wounds and Injuries - genetics ; Wounds and Injuries - metabolism ; Wounds and Injuries - therapy</subject><ispartof>Journal of cellular and molecular medicine, 2017-08, Vol.21 (8), p.1513-1522</ispartof><rights>2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley &amp; Sons Ltd and Foundation for Cellular and Molecular Medicine.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5140-e093dfddc2737d65d5df410403fa8400f1eb1433db4170191cff7c3344a172343</citedby><cites>FETCH-LOGICAL-c5140-e093dfddc2737d65d5df410403fa8400f1eb1433db4170191cff7c3344a172343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5542905/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5542905/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28211211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Dezhi</creatorcontrib><creatorcontrib>Zhao, Yong</creatorcontrib><creatorcontrib>Li, Zonghuan</creatorcontrib><creatorcontrib>Shou, Kangquan</creatorcontrib><creatorcontrib>Zheng, Xun</creatorcontrib><creatorcontrib>Li, Pengcheng</creatorcontrib><creatorcontrib>Qi, Baiwen</creatorcontrib><creatorcontrib>Yu, Aixi</creatorcontrib><title>Circulating fibrocyte mobilization in negative pressure wound therapy</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Non‐healing diabetic wounds are difficult to treat. They also create heavy financial burdens for both patients and society. Negative pressure wound therapy (NPWT) has been adopted to treat intractable wounds and has proved to be effective. However, the mechanisms that underlie the effects of this treatment are not entirely understood. Circulating fibrocytes are unique haematopoietic‐derived stem cells that have been reported to play a pivotal role in wound healing. Here, we have investigated the effect of NPWT on fibrocyte mobilization and the role of fibrocyte mobilization in the healing of diabetic wounds during NPWT. We show that the NPWT group exhibited 2.6‐fold to 12.1‐fold greater numbers of tail vein‐injected PKH‐26‐labelled fibrocytes in the diabetic wound sites compared with the control group. We also demonstrate that the full‐thickness skin wounds treated with NPWT exhibit significantly reduced mRNA and protein expression, blood vessel density and proliferating cells when exogenous fibrocyte mobilization is inhibited. We speculate that systemic mobilization of fibrocytes during NPWT may be a mechanism for healing intractable wounds in a diabetic rat model experiment and that enhancement of cell mobilization may represent a potential treatment idea for intractable wound healing across all fields of surgery.</description><subject>Animals</subject><subject>Chemokine CXCL12 - genetics</subject><subject>Chemokine CXCL12 - metabolism</subject><subject>circulating fibrocyte</subject><subject>Collagen Type I - genetics</subject><subject>Collagen Type I - metabolism</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Experimental - complications</subject><subject>Diabetes Mellitus, Experimental - genetics</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes Mellitus, Experimental - therapy</subject><subject>diabetic wound</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Hematopoietic stem cells</subject><subject>Male</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>mRNA</subject><subject>Negative-Pressure Wound Therapy</subject><subject>Organic Chemicals - chemistry</subject><subject>Original</subject><subject>Platelet-Derived Growth Factor - genetics</subject><subject>Platelet-Derived Growth Factor - metabolism</subject><subject>Pressure</subject><subject>Pressure ulcers</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Signal Transduction</subject><subject>Skin</subject><subject>Staining and Labeling - methods</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Streptozocin</subject><subject>Surgery</subject><subject>Therapeutic applications</subject><subject>Transforming Growth Factor beta1 - genetics</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Wound Healing</subject><subject>Wounds and Injuries - complications</subject><subject>Wounds and Injuries - genetics</subject><subject>Wounds and Injuries - metabolism</subject><subject>Wounds and Injuries - therapy</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV1LIzEUhsOiaHW92R-wDHizCNWcSaaT3AhL0d2Vijfrdcjko6bMJN1kpqX--o22inphOJDDycPDCS9C3wCfQz4XC9V150Aww1_QCCpWjikndG_XAyPsEB2ltMCYTIDwA3RYshIg1whdTV1UQyt75-eFdU0MatOboguNa91jHgdfOF94M8_9yhTLaFIaoinWYfC66B9MlMvNV7RvZZvMye4-RvfXV3-nv8ezu19_pj9nY1UBxWODOdFWa1XWpNaTSlfaUsAUEysZxdiCaYASohsKNQYOytpaEUKphLoklByjy613OTSd0cr4PspWLKPrZNyIIJ14_-Ldg5iHlagqWnJcZcGPnSCGf4NJvehcUqZtpTdhSALYhPMJw4xk9PQDughD9Pl7AnhZMVwSXmfqbEupGFKKxr4uA1g8pSOe0hHP6WT4-9v1X9GXODIAW2DtWrP5RCVupre3W-l_MOqauQ</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Chen, Dezhi</creator><creator>Zhao, Yong</creator><creator>Li, Zonghuan</creator><creator>Shou, Kangquan</creator><creator>Zheng, Xun</creator><creator>Li, Pengcheng</creator><creator>Qi, Baiwen</creator><creator>Yu, Aixi</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201708</creationdate><title>Circulating fibrocyte mobilization in negative pressure wound therapy</title><author>Chen, Dezhi ; Zhao, Yong ; Li, Zonghuan ; Shou, Kangquan ; Zheng, Xun ; Li, Pengcheng ; Qi, Baiwen ; Yu, Aixi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5140-e093dfddc2737d65d5df410403fa8400f1eb1433db4170191cff7c3344a172343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Chemokine CXCL12 - genetics</topic><topic>Chemokine CXCL12 - metabolism</topic><topic>circulating fibrocyte</topic><topic>Collagen Type I - genetics</topic><topic>Collagen Type I - metabolism</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Experimental - complications</topic><topic>Diabetes Mellitus, Experimental - genetics</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes Mellitus, Experimental - therapy</topic><topic>diabetic wound</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Hematopoietic stem cells</topic><topic>Male</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>mRNA</topic><topic>Negative-Pressure Wound Therapy</topic><topic>Organic Chemicals - chemistry</topic><topic>Original</topic><topic>Platelet-Derived Growth Factor - genetics</topic><topic>Platelet-Derived Growth Factor - metabolism</topic><topic>Pressure</topic><topic>Pressure ulcers</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Signal Transduction</topic><topic>Skin</topic><topic>Staining and Labeling - methods</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Streptozocin</topic><topic>Surgery</topic><topic>Therapeutic applications</topic><topic>Transforming Growth Factor beta1 - genetics</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Wound Healing</topic><topic>Wounds and Injuries - complications</topic><topic>Wounds and Injuries - genetics</topic><topic>Wounds and Injuries - metabolism</topic><topic>Wounds and Injuries - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Dezhi</creatorcontrib><creatorcontrib>Zhao, Yong</creatorcontrib><creatorcontrib>Li, Zonghuan</creatorcontrib><creatorcontrib>Shou, Kangquan</creatorcontrib><creatorcontrib>Zheng, Xun</creatorcontrib><creatorcontrib>Li, Pengcheng</creatorcontrib><creatorcontrib>Qi, Baiwen</creatorcontrib><creatorcontrib>Yu, Aixi</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Dezhi</au><au>Zhao, Yong</au><au>Li, Zonghuan</au><au>Shou, Kangquan</au><au>Zheng, Xun</au><au>Li, Pengcheng</au><au>Qi, Baiwen</au><au>Yu, Aixi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circulating fibrocyte mobilization in negative pressure wound therapy</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2017-08</date><risdate>2017</risdate><volume>21</volume><issue>8</issue><spage>1513</spage><epage>1522</epage><pages>1513-1522</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Non‐healing diabetic wounds are difficult to treat. They also create heavy financial burdens for both patients and society. Negative pressure wound therapy (NPWT) has been adopted to treat intractable wounds and has proved to be effective. However, the mechanisms that underlie the effects of this treatment are not entirely understood. Circulating fibrocytes are unique haematopoietic‐derived stem cells that have been reported to play a pivotal role in wound healing. Here, we have investigated the effect of NPWT on fibrocyte mobilization and the role of fibrocyte mobilization in the healing of diabetic wounds during NPWT. We show that the NPWT group exhibited 2.6‐fold to 12.1‐fold greater numbers of tail vein‐injected PKH‐26‐labelled fibrocytes in the diabetic wound sites compared with the control group. We also demonstrate that the full‐thickness skin wounds treated with NPWT exhibit significantly reduced mRNA and protein expression, blood vessel density and proliferating cells when exogenous fibrocyte mobilization is inhibited. We speculate that systemic mobilization of fibrocytes during NPWT may be a mechanism for healing intractable wounds in a diabetic rat model experiment and that enhancement of cell mobilization may represent a potential treatment idea for intractable wound healing across all fields of surgery.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>28211211</pmid><doi>10.1111/jcmm.13080</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2017-08, Vol.21 (8), p.1513-1522
issn 1582-1838
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5542905
source MEDLINE; Wiley Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; PubMed Central
subjects Animals
Chemokine CXCL12 - genetics
Chemokine CXCL12 - metabolism
circulating fibrocyte
Collagen Type I - genetics
Collagen Type I - metabolism
Diabetes
Diabetes mellitus
Diabetes Mellitus, Experimental - complications
Diabetes Mellitus, Experimental - genetics
Diabetes Mellitus, Experimental - metabolism
Diabetes Mellitus, Experimental - therapy
diabetic wound
Fluorescent Dyes - chemistry
Gene expression
Gene Expression Regulation
Hematopoietic stem cells
Male
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - metabolism
mRNA
Negative-Pressure Wound Therapy
Organic Chemicals - chemistry
Original
Platelet-Derived Growth Factor - genetics
Platelet-Derived Growth Factor - metabolism
Pressure
Pressure ulcers
Rats
Rats, Sprague-Dawley
Signal Transduction
Skin
Staining and Labeling - methods
Stem cell transplantation
Stem cells
Streptozocin
Surgery
Therapeutic applications
Transforming Growth Factor beta1 - genetics
Transforming Growth Factor beta1 - metabolism
Vascular Endothelial Growth Factor A - genetics
Vascular Endothelial Growth Factor A - metabolism
Wound Healing
Wounds and Injuries - complications
Wounds and Injuries - genetics
Wounds and Injuries - metabolism
Wounds and Injuries - therapy
title Circulating fibrocyte mobilization in negative pressure wound therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circulating%20fibrocyte%20mobilization%20in%20negative%20pressure%20wound%20therapy&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Chen,%20Dezhi&rft.date=2017-08&rft.volume=21&rft.issue=8&rft.spage=1513&rft.epage=1522&rft.pages=1513-1522&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.13080&rft_dat=%3Cproquest_pubme%3E1869968083%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925802397&rft_id=info:pmid/28211211&rfr_iscdi=true