MRI‐based prostate cancer detection with high‐level representation and hierarchical classification

Purpose Extracting the high‐level feature representation by using deep neural networks for detection of prostate cancer, and then based on high‐level feature representation constructing hierarchical classification to refine the detection results. Methods High‐level feature representation is first le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2017-03, Vol.44 (3), p.1028-1039
Hauptverfasser: Zhu, Yulian, Wang, Li, Liu, Mingxia, Qian, Chunjun, Yousuf, Ambereen, Oto, Aytekin, Shen, Dinggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1039
container_issue 3
container_start_page 1028
container_title Medical physics (Lancaster)
container_volume 44
creator Zhu, Yulian
Wang, Li
Liu, Mingxia
Qian, Chunjun
Yousuf, Ambereen
Oto, Aytekin
Shen, Dinggang
description Purpose Extracting the high‐level feature representation by using deep neural networks for detection of prostate cancer, and then based on high‐level feature representation constructing hierarchical classification to refine the detection results. Methods High‐level feature representation is first learned by a deep learning network, where multiparametric MR images are used as the input data. Then, based on the learned high‐level features, a hierarchical classification method is developed, where multiple random forest classifiers are iteratively constructed to refine the detection results of prostate cancer. Results The experiments were carried on 21 real patient subjects, and the proposed method achieves an averaged section‐based evaluation (SBE) of 89.90%, an averaged sensitivity of 91.51%, and an averaged specificity of 88.47%. Conclusions The high‐level features learned from our proposed method can achieve better performance than the conventional handcrafted features (e.g., LBP and Haar‐like features) in detecting prostate cancer regions, also the context features obtained from the proposed hierarchical classification approach are effective in refining cancer detection result.
doi_str_mv 10.1002/mp.12116
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5540150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861584825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4106-9c7085b843d821ce0455c8c996266edbdaf6827b08fb21936bcfe2d441c62ee93</originalsourceid><addsrcrecordid>eNp1kc1O3DAURq2qqAzTSjwByrKbwLVje5wNUoWgIIGKqnZtOc4NMXJ-sDOD2PEIPGOfBA8zULro6lr6js698kfIPoVDCsCOuvGQMkrlBzJjfFHknEH5kcwASp4zDmKX7MV4CwCyEPCJ7DJFYSG4mpHm6ufFn8enykSsszEMcTITZtb0FkNW44R2ckOf3bupzVp30ybW4wp9FnAMGLFP_BowfZ1yDCbY1lnjM-tNjK5J73X-mew0xkf8sp1z8vvs9NfJeX754_vFybfL3HIKMi_tApSoFC9qxahF4EJYZctSMimxrmrTSMUWFaimYrQsZGUbZDXn1EqGWBZzcrzxjsuqw9qm-4LxegyuM-FBD8bpf5PetfpmWGkhOFABSfB1KwjD3RLjpDsXLXpvehyWUVMlqVBcMfEXtenbYsDmbQ0Fva5Fd6N-qSWhB-_PegNfe0hAvgHunceH_4r01fVG-AzfyZqJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861584825</pqid></control><display><type>article</type><title>MRI‐based prostate cancer detection with high‐level representation and hierarchical classification</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Zhu, Yulian ; Wang, Li ; Liu, Mingxia ; Qian, Chunjun ; Yousuf, Ambereen ; Oto, Aytekin ; Shen, Dinggang</creator><creatorcontrib>Zhu, Yulian ; Wang, Li ; Liu, Mingxia ; Qian, Chunjun ; Yousuf, Ambereen ; Oto, Aytekin ; Shen, Dinggang</creatorcontrib><description>Purpose Extracting the high‐level feature representation by using deep neural networks for detection of prostate cancer, and then based on high‐level feature representation constructing hierarchical classification to refine the detection results. Methods High‐level feature representation is first learned by a deep learning network, where multiparametric MR images are used as the input data. Then, based on the learned high‐level features, a hierarchical classification method is developed, where multiple random forest classifiers are iteratively constructed to refine the detection results of prostate cancer. Results The experiments were carried on 21 real patient subjects, and the proposed method achieves an averaged section‐based evaluation (SBE) of 89.90%, an averaged sensitivity of 91.51%, and an averaged specificity of 88.47%. Conclusions The high‐level features learned from our proposed method can achieve better performance than the conventional handcrafted features (e.g., LBP and Haar‐like features) in detecting prostate cancer regions, also the context features obtained from the proposed hierarchical classification approach are effective in refining cancer detection result.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.12116</identifier><identifier>PMID: 28107548</identifier><language>eng</language><publisher>United States</publisher><subject>Datasets as Topic ; deep learning ; hierarchical classification ; Humans ; Image Interpretation, Computer-Assisted - methods ; magnetic resonance imaging (MRI) ; Magnetic Resonance Imaging - methods ; Male ; Neural Networks (Computer) ; Prostate - diagnostic imaging ; prostate cancer detection ; Prostatic Neoplasms - diagnostic imaging ; random forest ; Sensitivity and Specificity</subject><ispartof>Medical physics (Lancaster), 2017-03, Vol.44 (3), p.1028-1039</ispartof><rights>2017 American Association of Physicists in Medicine</rights><rights>2017 American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4106-9c7085b843d821ce0455c8c996266edbdaf6827b08fb21936bcfe2d441c62ee93</citedby><cites>FETCH-LOGICAL-c4106-9c7085b843d821ce0455c8c996266edbdaf6827b08fb21936bcfe2d441c62ee93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmp.12116$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmp.12116$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28107548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Yulian</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Liu, Mingxia</creatorcontrib><creatorcontrib>Qian, Chunjun</creatorcontrib><creatorcontrib>Yousuf, Ambereen</creatorcontrib><creatorcontrib>Oto, Aytekin</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><title>MRI‐based prostate cancer detection with high‐level representation and hierarchical classification</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose Extracting the high‐level feature representation by using deep neural networks for detection of prostate cancer, and then based on high‐level feature representation constructing hierarchical classification to refine the detection results. Methods High‐level feature representation is first learned by a deep learning network, where multiparametric MR images are used as the input data. Then, based on the learned high‐level features, a hierarchical classification method is developed, where multiple random forest classifiers are iteratively constructed to refine the detection results of prostate cancer. Results The experiments were carried on 21 real patient subjects, and the proposed method achieves an averaged section‐based evaluation (SBE) of 89.90%, an averaged sensitivity of 91.51%, and an averaged specificity of 88.47%. Conclusions The high‐level features learned from our proposed method can achieve better performance than the conventional handcrafted features (e.g., LBP and Haar‐like features) in detecting prostate cancer regions, also the context features obtained from the proposed hierarchical classification approach are effective in refining cancer detection result.</description><subject>Datasets as Topic</subject><subject>deep learning</subject><subject>hierarchical classification</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>magnetic resonance imaging (MRI)</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Neural Networks (Computer)</subject><subject>Prostate - diagnostic imaging</subject><subject>prostate cancer detection</subject><subject>Prostatic Neoplasms - diagnostic imaging</subject><subject>random forest</subject><subject>Sensitivity and Specificity</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1O3DAURq2qqAzTSjwByrKbwLVje5wNUoWgIIGKqnZtOc4NMXJ-sDOD2PEIPGOfBA8zULro6lr6js698kfIPoVDCsCOuvGQMkrlBzJjfFHknEH5kcwASp4zDmKX7MV4CwCyEPCJ7DJFYSG4mpHm6ufFn8enykSsszEMcTITZtb0FkNW44R2ckOf3bupzVp30ybW4wp9FnAMGLFP_BowfZ1yDCbY1lnjM-tNjK5J73X-mew0xkf8sp1z8vvs9NfJeX754_vFybfL3HIKMi_tApSoFC9qxahF4EJYZctSMimxrmrTSMUWFaimYrQsZGUbZDXn1EqGWBZzcrzxjsuqw9qm-4LxegyuM-FBD8bpf5PetfpmWGkhOFABSfB1KwjD3RLjpDsXLXpvehyWUVMlqVBcMfEXtenbYsDmbQ0Fva5Fd6N-qSWhB-_PegNfe0hAvgHunceH_4r01fVG-AzfyZqJ</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Zhu, Yulian</creator><creator>Wang, Li</creator><creator>Liu, Mingxia</creator><creator>Qian, Chunjun</creator><creator>Yousuf, Ambereen</creator><creator>Oto, Aytekin</creator><creator>Shen, Dinggang</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201703</creationdate><title>MRI‐based prostate cancer detection with high‐level representation and hierarchical classification</title><author>Zhu, Yulian ; Wang, Li ; Liu, Mingxia ; Qian, Chunjun ; Yousuf, Ambereen ; Oto, Aytekin ; Shen, Dinggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4106-9c7085b843d821ce0455c8c996266edbdaf6827b08fb21936bcfe2d441c62ee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Datasets as Topic</topic><topic>deep learning</topic><topic>hierarchical classification</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>magnetic resonance imaging (MRI)</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Neural Networks (Computer)</topic><topic>Prostate - diagnostic imaging</topic><topic>prostate cancer detection</topic><topic>Prostatic Neoplasms - diagnostic imaging</topic><topic>random forest</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yulian</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Liu, Mingxia</creatorcontrib><creatorcontrib>Qian, Chunjun</creatorcontrib><creatorcontrib>Yousuf, Ambereen</creatorcontrib><creatorcontrib>Oto, Aytekin</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yulian</au><au>Wang, Li</au><au>Liu, Mingxia</au><au>Qian, Chunjun</au><au>Yousuf, Ambereen</au><au>Oto, Aytekin</au><au>Shen, Dinggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRI‐based prostate cancer detection with high‐level representation and hierarchical classification</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2017-03</date><risdate>2017</risdate><volume>44</volume><issue>3</issue><spage>1028</spage><epage>1039</epage><pages>1028-1039</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Purpose Extracting the high‐level feature representation by using deep neural networks for detection of prostate cancer, and then based on high‐level feature representation constructing hierarchical classification to refine the detection results. Methods High‐level feature representation is first learned by a deep learning network, where multiparametric MR images are used as the input data. Then, based on the learned high‐level features, a hierarchical classification method is developed, where multiple random forest classifiers are iteratively constructed to refine the detection results of prostate cancer. Results The experiments were carried on 21 real patient subjects, and the proposed method achieves an averaged section‐based evaluation (SBE) of 89.90%, an averaged sensitivity of 91.51%, and an averaged specificity of 88.47%. Conclusions The high‐level features learned from our proposed method can achieve better performance than the conventional handcrafted features (e.g., LBP and Haar‐like features) in detecting prostate cancer regions, also the context features obtained from the proposed hierarchical classification approach are effective in refining cancer detection result.</abstract><cop>United States</cop><pmid>28107548</pmid><doi>10.1002/mp.12116</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2017-03, Vol.44 (3), p.1028-1039
issn 0094-2405
2473-4209
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5540150
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Datasets as Topic
deep learning
hierarchical classification
Humans
Image Interpretation, Computer-Assisted - methods
magnetic resonance imaging (MRI)
Magnetic Resonance Imaging - methods
Male
Neural Networks (Computer)
Prostate - diagnostic imaging
prostate cancer detection
Prostatic Neoplasms - diagnostic imaging
random forest
Sensitivity and Specificity
title MRI‐based prostate cancer detection with high‐level representation and hierarchical classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRI%E2%80%90based%20prostate%20cancer%20detection%20with%20high%E2%80%90level%20representation%20and%20hierarchical%20classification&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Zhu,%20Yulian&rft.date=2017-03&rft.volume=44&rft.issue=3&rft.spage=1028&rft.epage=1039&rft.pages=1028-1039&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.12116&rft_dat=%3Cproquest_pubme%3E1861584825%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861584825&rft_id=info:pmid/28107548&rfr_iscdi=true