MRI‐based prostate cancer detection with high‐level representation and hierarchical classification
Purpose Extracting the high‐level feature representation by using deep neural networks for detection of prostate cancer, and then based on high‐level feature representation constructing hierarchical classification to refine the detection results. Methods High‐level feature representation is first le...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2017-03, Vol.44 (3), p.1028-1039 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1039 |
---|---|
container_issue | 3 |
container_start_page | 1028 |
container_title | Medical physics (Lancaster) |
container_volume | 44 |
creator | Zhu, Yulian Wang, Li Liu, Mingxia Qian, Chunjun Yousuf, Ambereen Oto, Aytekin Shen, Dinggang |
description | Purpose
Extracting the high‐level feature representation by using deep neural networks for detection of prostate cancer, and then based on high‐level feature representation constructing hierarchical classification to refine the detection results.
Methods
High‐level feature representation is first learned by a deep learning network, where multiparametric MR images are used as the input data. Then, based on the learned high‐level features, a hierarchical classification method is developed, where multiple random forest classifiers are iteratively constructed to refine the detection results of prostate cancer.
Results
The experiments were carried on 21 real patient subjects, and the proposed method achieves an averaged section‐based evaluation (SBE) of 89.90%, an averaged sensitivity of 91.51%, and an averaged specificity of 88.47%.
Conclusions
The high‐level features learned from our proposed method can achieve better performance than the conventional handcrafted features (e.g., LBP and Haar‐like features) in detecting prostate cancer regions, also the context features obtained from the proposed hierarchical classification approach are effective in refining cancer detection result. |
doi_str_mv | 10.1002/mp.12116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5540150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861584825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4106-9c7085b843d821ce0455c8c996266edbdaf6827b08fb21936bcfe2d441c62ee93</originalsourceid><addsrcrecordid>eNp1kc1O3DAURq2qqAzTSjwByrKbwLVje5wNUoWgIIGKqnZtOc4NMXJ-sDOD2PEIPGOfBA8zULro6lr6js698kfIPoVDCsCOuvGQMkrlBzJjfFHknEH5kcwASp4zDmKX7MV4CwCyEPCJ7DJFYSG4mpHm6ufFn8enykSsszEMcTITZtb0FkNW44R2ckOf3bupzVp30ybW4wp9FnAMGLFP_BowfZ1yDCbY1lnjM-tNjK5J73X-mew0xkf8sp1z8vvs9NfJeX754_vFybfL3HIKMi_tApSoFC9qxahF4EJYZctSMimxrmrTSMUWFaimYrQsZGUbZDXn1EqGWBZzcrzxjsuqw9qm-4LxegyuM-FBD8bpf5PetfpmWGkhOFABSfB1KwjD3RLjpDsXLXpvehyWUVMlqVBcMfEXtenbYsDmbQ0Fva5Fd6N-qSWhB-_PegNfe0hAvgHunceH_4r01fVG-AzfyZqJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861584825</pqid></control><display><type>article</type><title>MRI‐based prostate cancer detection with high‐level representation and hierarchical classification</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Zhu, Yulian ; Wang, Li ; Liu, Mingxia ; Qian, Chunjun ; Yousuf, Ambereen ; Oto, Aytekin ; Shen, Dinggang</creator><creatorcontrib>Zhu, Yulian ; Wang, Li ; Liu, Mingxia ; Qian, Chunjun ; Yousuf, Ambereen ; Oto, Aytekin ; Shen, Dinggang</creatorcontrib><description>Purpose
Extracting the high‐level feature representation by using deep neural networks for detection of prostate cancer, and then based on high‐level feature representation constructing hierarchical classification to refine the detection results.
Methods
High‐level feature representation is first learned by a deep learning network, where multiparametric MR images are used as the input data. Then, based on the learned high‐level features, a hierarchical classification method is developed, where multiple random forest classifiers are iteratively constructed to refine the detection results of prostate cancer.
Results
The experiments were carried on 21 real patient subjects, and the proposed method achieves an averaged section‐based evaluation (SBE) of 89.90%, an averaged sensitivity of 91.51%, and an averaged specificity of 88.47%.
Conclusions
The high‐level features learned from our proposed method can achieve better performance than the conventional handcrafted features (e.g., LBP and Haar‐like features) in detecting prostate cancer regions, also the context features obtained from the proposed hierarchical classification approach are effective in refining cancer detection result.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.12116</identifier><identifier>PMID: 28107548</identifier><language>eng</language><publisher>United States</publisher><subject>Datasets as Topic ; deep learning ; hierarchical classification ; Humans ; Image Interpretation, Computer-Assisted - methods ; magnetic resonance imaging (MRI) ; Magnetic Resonance Imaging - methods ; Male ; Neural Networks (Computer) ; Prostate - diagnostic imaging ; prostate cancer detection ; Prostatic Neoplasms - diagnostic imaging ; random forest ; Sensitivity and Specificity</subject><ispartof>Medical physics (Lancaster), 2017-03, Vol.44 (3), p.1028-1039</ispartof><rights>2017 American Association of Physicists in Medicine</rights><rights>2017 American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4106-9c7085b843d821ce0455c8c996266edbdaf6827b08fb21936bcfe2d441c62ee93</citedby><cites>FETCH-LOGICAL-c4106-9c7085b843d821ce0455c8c996266edbdaf6827b08fb21936bcfe2d441c62ee93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmp.12116$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmp.12116$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28107548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Yulian</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Liu, Mingxia</creatorcontrib><creatorcontrib>Qian, Chunjun</creatorcontrib><creatorcontrib>Yousuf, Ambereen</creatorcontrib><creatorcontrib>Oto, Aytekin</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><title>MRI‐based prostate cancer detection with high‐level representation and hierarchical classification</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose
Extracting the high‐level feature representation by using deep neural networks for detection of prostate cancer, and then based on high‐level feature representation constructing hierarchical classification to refine the detection results.
Methods
High‐level feature representation is first learned by a deep learning network, where multiparametric MR images are used as the input data. Then, based on the learned high‐level features, a hierarchical classification method is developed, where multiple random forest classifiers are iteratively constructed to refine the detection results of prostate cancer.
Results
The experiments were carried on 21 real patient subjects, and the proposed method achieves an averaged section‐based evaluation (SBE) of 89.90%, an averaged sensitivity of 91.51%, and an averaged specificity of 88.47%.
Conclusions
The high‐level features learned from our proposed method can achieve better performance than the conventional handcrafted features (e.g., LBP and Haar‐like features) in detecting prostate cancer regions, also the context features obtained from the proposed hierarchical classification approach are effective in refining cancer detection result.</description><subject>Datasets as Topic</subject><subject>deep learning</subject><subject>hierarchical classification</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>magnetic resonance imaging (MRI)</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Neural Networks (Computer)</subject><subject>Prostate - diagnostic imaging</subject><subject>prostate cancer detection</subject><subject>Prostatic Neoplasms - diagnostic imaging</subject><subject>random forest</subject><subject>Sensitivity and Specificity</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1O3DAURq2qqAzTSjwByrKbwLVje5wNUoWgIIGKqnZtOc4NMXJ-sDOD2PEIPGOfBA8zULro6lr6js698kfIPoVDCsCOuvGQMkrlBzJjfFHknEH5kcwASp4zDmKX7MV4CwCyEPCJ7DJFYSG4mpHm6ufFn8enykSsszEMcTITZtb0FkNW44R2ckOf3bupzVp30ybW4wp9FnAMGLFP_BowfZ1yDCbY1lnjM-tNjK5J73X-mew0xkf8sp1z8vvs9NfJeX754_vFybfL3HIKMi_tApSoFC9qxahF4EJYZctSMimxrmrTSMUWFaimYrQsZGUbZDXn1EqGWBZzcrzxjsuqw9qm-4LxegyuM-FBD8bpf5PetfpmWGkhOFABSfB1KwjD3RLjpDsXLXpvehyWUVMlqVBcMfEXtenbYsDmbQ0Fva5Fd6N-qSWhB-_PegNfe0hAvgHunceH_4r01fVG-AzfyZqJ</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Zhu, Yulian</creator><creator>Wang, Li</creator><creator>Liu, Mingxia</creator><creator>Qian, Chunjun</creator><creator>Yousuf, Ambereen</creator><creator>Oto, Aytekin</creator><creator>Shen, Dinggang</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201703</creationdate><title>MRI‐based prostate cancer detection with high‐level representation and hierarchical classification</title><author>Zhu, Yulian ; Wang, Li ; Liu, Mingxia ; Qian, Chunjun ; Yousuf, Ambereen ; Oto, Aytekin ; Shen, Dinggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4106-9c7085b843d821ce0455c8c996266edbdaf6827b08fb21936bcfe2d441c62ee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Datasets as Topic</topic><topic>deep learning</topic><topic>hierarchical classification</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>magnetic resonance imaging (MRI)</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Neural Networks (Computer)</topic><topic>Prostate - diagnostic imaging</topic><topic>prostate cancer detection</topic><topic>Prostatic Neoplasms - diagnostic imaging</topic><topic>random forest</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yulian</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Liu, Mingxia</creatorcontrib><creatorcontrib>Qian, Chunjun</creatorcontrib><creatorcontrib>Yousuf, Ambereen</creatorcontrib><creatorcontrib>Oto, Aytekin</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yulian</au><au>Wang, Li</au><au>Liu, Mingxia</au><au>Qian, Chunjun</au><au>Yousuf, Ambereen</au><au>Oto, Aytekin</au><au>Shen, Dinggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRI‐based prostate cancer detection with high‐level representation and hierarchical classification</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2017-03</date><risdate>2017</risdate><volume>44</volume><issue>3</issue><spage>1028</spage><epage>1039</epage><pages>1028-1039</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Purpose
Extracting the high‐level feature representation by using deep neural networks for detection of prostate cancer, and then based on high‐level feature representation constructing hierarchical classification to refine the detection results.
Methods
High‐level feature representation is first learned by a deep learning network, where multiparametric MR images are used as the input data. Then, based on the learned high‐level features, a hierarchical classification method is developed, where multiple random forest classifiers are iteratively constructed to refine the detection results of prostate cancer.
Results
The experiments were carried on 21 real patient subjects, and the proposed method achieves an averaged section‐based evaluation (SBE) of 89.90%, an averaged sensitivity of 91.51%, and an averaged specificity of 88.47%.
Conclusions
The high‐level features learned from our proposed method can achieve better performance than the conventional handcrafted features (e.g., LBP and Haar‐like features) in detecting prostate cancer regions, also the context features obtained from the proposed hierarchical classification approach are effective in refining cancer detection result.</abstract><cop>United States</cop><pmid>28107548</pmid><doi>10.1002/mp.12116</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2017-03, Vol.44 (3), p.1028-1039 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5540150 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Datasets as Topic deep learning hierarchical classification Humans Image Interpretation, Computer-Assisted - methods magnetic resonance imaging (MRI) Magnetic Resonance Imaging - methods Male Neural Networks (Computer) Prostate - diagnostic imaging prostate cancer detection Prostatic Neoplasms - diagnostic imaging random forest Sensitivity and Specificity |
title | MRI‐based prostate cancer detection with high‐level representation and hierarchical classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRI%E2%80%90based%20prostate%20cancer%20detection%20with%20high%E2%80%90level%20representation%20and%20hierarchical%20classification&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Zhu,%20Yulian&rft.date=2017-03&rft.volume=44&rft.issue=3&rft.spage=1028&rft.epage=1039&rft.pages=1028-1039&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.12116&rft_dat=%3Cproquest_pubme%3E1861584825%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861584825&rft_id=info:pmid/28107548&rfr_iscdi=true |