Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells

The PROTAC (proteolysis-targeting chimera) ARV-825 recruits bromodomain and extraterminal (BET) proteins to the E3 ubiquitin ligase cereblon, leading to degradation of BET proteins, including BRD4. Although the BET-protein inhibitor (BETi) OTX015 caused accumulation of BRD4, treatment with equimolar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Leukemia 2017-09, Vol.31 (9), p.1951-1961
Hauptverfasser: Saenz, D T, Fiskus, W, Qian, Y, Manshouri, T, Rajapakshe, K, Raina, K, Coleman, K G, Crew, A P, Shen, A, Mill, C P, Sun, B, Qiu, P, Kadia, T M, Pemmaraju, N, DiNardo, C, Kim, M-S, Nowak, A J, Coarfa, C, Crews, C M, Verstovsek, S, Bhalla, K N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1961
container_issue 9
container_start_page 1951
container_title Leukemia
container_volume 31
creator Saenz, D T
Fiskus, W
Qian, Y
Manshouri, T
Rajapakshe, K
Raina, K
Coleman, K G
Crew, A P
Shen, A
Mill, C P
Sun, B
Qiu, P
Kadia, T M
Pemmaraju, N
DiNardo, C
Kim, M-S
Nowak, A J
Coarfa, C
Crews, C M
Verstovsek, S
Bhalla, K N
description The PROTAC (proteolysis-targeting chimera) ARV-825 recruits bromodomain and extraterminal (BET) proteins to the E3 ubiquitin ligase cereblon, leading to degradation of BET proteins, including BRD4. Although the BET-protein inhibitor (BETi) OTX015 caused accumulation of BRD4, treatment with equimolar concentrations of ARV-825 caused sustained and profound depletion (>90%) of BRD4 and induced significantly more apoptosis in cultured and patient-derived (PD) CD34+ post-MPN sAML cells, while relatively sparing the CD34+ normal hematopoietic progenitor cells. RNA-Seq, Reverse Phase Protein Array and mass cytometry ‘CyTOF’ analyses demonstrated that ARV-825 caused greater perturbations in messenger RNA (mRNA) and protein expressions than OTX015 in sAML cells. Specifically, compared with OTX015, ARV-825 treatment caused more robust and sustained depletion of c-Myc, CDK4/6, JAK2, p-STAT3/5, PIM1 and Bcl-xL, while increasing the levels of p21 and p27. Compared with OTX015, PROTAC ARV-771 treatment caused greater reduction in leukemia burden and further improved survival of NSG mice engrafted with luciferase-expressing HEL92.1.7 cells. Co-treatment with ARV-825 and JAK inhibitor ruxolitinib was synergistically lethal against established and PD CD34+ sAML cells. Notably, ARV-825 induced high levels of apoptosis in the in vitro generated ruxolitinib-persister or ruxolitinib-resistant sAML cells. These findings strongly support the in vivo testing of the BRD4-PROTAC based combinations against post-MPN sAML.
doi_str_mv 10.1038/leu.2016.393
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5537055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1935809470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-6b42d432c12fb0b9fa52218f6c848bded8c73207a512b94aea4b6ba1c565226e3</originalsourceid><addsrcrecordid>eNp9kl-L1DAUxYMo7jj65rMEfNkFOyZpmrYvwrqsf2DUl_U5JOltJ0va1CQdnK_lJzTDrMsK4ksuyf1xzoEchF5SsqGkbN46WDaMULEp2_IRWlFei6KqKvoYrUjT1IVoGT9Dz2K8JeS4FE_RGWsIZ5TzFfr11e_B4ffXN3gOPoGdTtO7Q7SxSCoMkOw0YLOzIwSF4SeEFHFcZgjWB-wg7ZTDyiS7t-mA823COvjRd35UWc5OO6ttyuh5drEXWA35OSY8-5iK8QDOZ0dn-6yeNQBP4Gen4ogjGD91KhzwebzAl1-22IBz8Tl60isX4cXdXKPvH65vrj4V228fP19dbgtTcZ4KoTnreMkMZb0muu1VxRhtemEa3ugOusbUJSO1qijTLVeguBZaUVOJDAoo1-jdSXde9AidgSkF5eQc7JgzSa-s_Hsz2Z0c_F5WVVmTfKzR6zuB4H8sEJO89UuYcmbJBM0Ao4T-j6JtWTWk5TXJ1JsTZYKPMUB_n4MSeeyBzD2Qxx7I3IOMv3qY_R7-8_EZKE5AzKtpgPDA9V-CvwGV3MIG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935809470</pqid></control><display><type>article</type><title>Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><source>Nature Journals Online</source><creator>Saenz, D T ; Fiskus, W ; Qian, Y ; Manshouri, T ; Rajapakshe, K ; Raina, K ; Coleman, K G ; Crew, A P ; Shen, A ; Mill, C P ; Sun, B ; Qiu, P ; Kadia, T M ; Pemmaraju, N ; DiNardo, C ; Kim, M-S ; Nowak, A J ; Coarfa, C ; Crews, C M ; Verstovsek, S ; Bhalla, K N</creator><creatorcontrib>Saenz, D T ; Fiskus, W ; Qian, Y ; Manshouri, T ; Rajapakshe, K ; Raina, K ; Coleman, K G ; Crew, A P ; Shen, A ; Mill, C P ; Sun, B ; Qiu, P ; Kadia, T M ; Pemmaraju, N ; DiNardo, C ; Kim, M-S ; Nowak, A J ; Coarfa, C ; Crews, C M ; Verstovsek, S ; Bhalla, K N</creatorcontrib><description>The PROTAC (proteolysis-targeting chimera) ARV-825 recruits bromodomain and extraterminal (BET) proteins to the E3 ubiquitin ligase cereblon, leading to degradation of BET proteins, including BRD4. Although the BET-protein inhibitor (BETi) OTX015 caused accumulation of BRD4, treatment with equimolar concentrations of ARV-825 caused sustained and profound depletion (&gt;90%) of BRD4 and induced significantly more apoptosis in cultured and patient-derived (PD) CD34+ post-MPN sAML cells, while relatively sparing the CD34+ normal hematopoietic progenitor cells. RNA-Seq, Reverse Phase Protein Array and mass cytometry ‘CyTOF’ analyses demonstrated that ARV-825 caused greater perturbations in messenger RNA (mRNA) and protein expressions than OTX015 in sAML cells. Specifically, compared with OTX015, ARV-825 treatment caused more robust and sustained depletion of c-Myc, CDK4/6, JAK2, p-STAT3/5, PIM1 and Bcl-xL, while increasing the levels of p21 and p27. Compared with OTX015, PROTAC ARV-771 treatment caused greater reduction in leukemia burden and further improved survival of NSG mice engrafted with luciferase-expressing HEL92.1.7 cells. Co-treatment with ARV-825 and JAK inhibitor ruxolitinib was synergistically lethal against established and PD CD34+ sAML cells. Notably, ARV-825 induced high levels of apoptosis in the in vitro generated ruxolitinib-persister or ruxolitinib-resistant sAML cells. These findings strongly support the in vivo testing of the BRD4-PROTAC based combinations against post-MPN sAML.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/leu.2016.393</identifier><identifier>PMID: 28042144</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/1 ; 13/106 ; 13/2 ; 13/31 ; 14 ; 14/1 ; 14/19 ; 14/34 ; 38 ; 38/91 ; 59/5 ; 631/67/1059/602 ; 631/80/82/23 ; 64 ; 64/60 ; 82/79 ; 96 ; 96/2 ; Acute myeloid leukemia ; Animals ; Antigens, CD34 ; Apoptosis ; Apoptosis - drug effects ; Azepines - pharmacology ; Azepines - therapeutic use ; Bcl protein ; Bcl-x protein ; Bet protein ; Biocompatibility ; Biomedical materials ; c-Myc protein ; Cancer Research ; CD34 antigen ; Cell Cycle Proteins ; Cell Line, Tumor ; Cells (biology) ; Critical Care Medicine ; Cyclin-dependent kinase 4 ; Cytometry ; Degradation ; Depletion ; Hematology ; Hematopoietic stem cells ; Humans ; In vitro methods and tests ; In vivo methods and tests ; Inhibitors ; Intensive ; Internal Medicine ; Janus kinase 2 ; Leukemia ; Leukemia, Myeloid, Acute - drug therapy ; Leukemia, Myeloid, Acute - pathology ; Medicine ; Medicine &amp; Public Health ; Mice ; mRNA ; Myc protein ; Myeloproliferative Disorders - pathology ; Nitriles ; Nuclear Proteins - metabolism ; Oncology ; original-article ; Perturbation ; Progenitor cells ; Protein arrays ; Proteins ; Proteolysis ; Pyrazoles - pharmacology ; Pyrimidines ; Ribonucleic acid ; RNA ; Stat3 protein ; Surgical implants ; Thalidomide - analogs &amp; derivatives ; Thalidomide - pharmacology ; Thalidomide - therapeutic use ; Transcription Factors - metabolism ; Tumor Burden - drug effects ; Ubiquitin ; Ubiquitin-protein ligase ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>Leukemia, 2017-09, Vol.31 (9), p.1951-1961</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. 2017</rights><rights>Copyright Nature Publishing Group Sep 2017</rights><rights>Macmillan Publishers Limited, part of Springer Nature. 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-6b42d432c12fb0b9fa52218f6c848bded8c73207a512b94aea4b6ba1c565226e3</citedby><cites>FETCH-LOGICAL-c544t-6b42d432c12fb0b9fa52218f6c848bded8c73207a512b94aea4b6ba1c565226e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/leu.2016.393$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/leu.2016.393$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28042144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saenz, D T</creatorcontrib><creatorcontrib>Fiskus, W</creatorcontrib><creatorcontrib>Qian, Y</creatorcontrib><creatorcontrib>Manshouri, T</creatorcontrib><creatorcontrib>Rajapakshe, K</creatorcontrib><creatorcontrib>Raina, K</creatorcontrib><creatorcontrib>Coleman, K G</creatorcontrib><creatorcontrib>Crew, A P</creatorcontrib><creatorcontrib>Shen, A</creatorcontrib><creatorcontrib>Mill, C P</creatorcontrib><creatorcontrib>Sun, B</creatorcontrib><creatorcontrib>Qiu, P</creatorcontrib><creatorcontrib>Kadia, T M</creatorcontrib><creatorcontrib>Pemmaraju, N</creatorcontrib><creatorcontrib>DiNardo, C</creatorcontrib><creatorcontrib>Kim, M-S</creatorcontrib><creatorcontrib>Nowak, A J</creatorcontrib><creatorcontrib>Coarfa, C</creatorcontrib><creatorcontrib>Crews, C M</creatorcontrib><creatorcontrib>Verstovsek, S</creatorcontrib><creatorcontrib>Bhalla, K N</creatorcontrib><title>Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>The PROTAC (proteolysis-targeting chimera) ARV-825 recruits bromodomain and extraterminal (BET) proteins to the E3 ubiquitin ligase cereblon, leading to degradation of BET proteins, including BRD4. Although the BET-protein inhibitor (BETi) OTX015 caused accumulation of BRD4, treatment with equimolar concentrations of ARV-825 caused sustained and profound depletion (&gt;90%) of BRD4 and induced significantly more apoptosis in cultured and patient-derived (PD) CD34+ post-MPN sAML cells, while relatively sparing the CD34+ normal hematopoietic progenitor cells. RNA-Seq, Reverse Phase Protein Array and mass cytometry ‘CyTOF’ analyses demonstrated that ARV-825 caused greater perturbations in messenger RNA (mRNA) and protein expressions than OTX015 in sAML cells. Specifically, compared with OTX015, ARV-825 treatment caused more robust and sustained depletion of c-Myc, CDK4/6, JAK2, p-STAT3/5, PIM1 and Bcl-xL, while increasing the levels of p21 and p27. Compared with OTX015, PROTAC ARV-771 treatment caused greater reduction in leukemia burden and further improved survival of NSG mice engrafted with luciferase-expressing HEL92.1.7 cells. Co-treatment with ARV-825 and JAK inhibitor ruxolitinib was synergistically lethal against established and PD CD34+ sAML cells. Notably, ARV-825 induced high levels of apoptosis in the in vitro generated ruxolitinib-persister or ruxolitinib-resistant sAML cells. These findings strongly support the in vivo testing of the BRD4-PROTAC based combinations against post-MPN sAML.</description><subject>13</subject><subject>13/1</subject><subject>13/106</subject><subject>13/2</subject><subject>13/31</subject><subject>14</subject><subject>14/1</subject><subject>14/19</subject><subject>14/34</subject><subject>38</subject><subject>38/91</subject><subject>59/5</subject><subject>631/67/1059/602</subject><subject>631/80/82/23</subject><subject>64</subject><subject>64/60</subject><subject>82/79</subject><subject>96</subject><subject>96/2</subject><subject>Acute myeloid leukemia</subject><subject>Animals</subject><subject>Antigens, CD34</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Azepines - pharmacology</subject><subject>Azepines - therapeutic use</subject><subject>Bcl protein</subject><subject>Bcl-x protein</subject><subject>Bet protein</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>c-Myc protein</subject><subject>Cancer Research</subject><subject>CD34 antigen</subject><subject>Cell Cycle Proteins</subject><subject>Cell Line, Tumor</subject><subject>Cells (biology)</subject><subject>Critical Care Medicine</subject><subject>Cyclin-dependent kinase 4</subject><subject>Cytometry</subject><subject>Degradation</subject><subject>Depletion</subject><subject>Hematology</subject><subject>Hematopoietic stem cells</subject><subject>Humans</subject><subject>In vitro methods and tests</subject><subject>In vivo methods and tests</subject><subject>Inhibitors</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Janus kinase 2</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid, Acute - drug therapy</subject><subject>Leukemia, Myeloid, Acute - pathology</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>mRNA</subject><subject>Myc protein</subject><subject>Myeloproliferative Disorders - pathology</subject><subject>Nitriles</subject><subject>Nuclear Proteins - metabolism</subject><subject>Oncology</subject><subject>original-article</subject><subject>Perturbation</subject><subject>Progenitor cells</subject><subject>Protein arrays</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrimidines</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Stat3 protein</subject><subject>Surgical implants</subject><subject>Thalidomide - analogs &amp; derivatives</subject><subject>Thalidomide - pharmacology</subject><subject>Thalidomide - therapeutic use</subject><subject>Transcription Factors - metabolism</subject><subject>Tumor Burden - drug effects</subject><subject>Ubiquitin</subject><subject>Ubiquitin-protein ligase</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kl-L1DAUxYMo7jj65rMEfNkFOyZpmrYvwrqsf2DUl_U5JOltJ0va1CQdnK_lJzTDrMsK4ksuyf1xzoEchF5SsqGkbN46WDaMULEp2_IRWlFei6KqKvoYrUjT1IVoGT9Dz2K8JeS4FE_RGWsIZ5TzFfr11e_B4ffXN3gOPoGdTtO7Q7SxSCoMkOw0YLOzIwSF4SeEFHFcZgjWB-wg7ZTDyiS7t-mA823COvjRd35UWc5OO6ttyuh5drEXWA35OSY8-5iK8QDOZ0dn-6yeNQBP4Gen4ogjGD91KhzwebzAl1-22IBz8Tl60isX4cXdXKPvH65vrj4V228fP19dbgtTcZ4KoTnreMkMZb0muu1VxRhtemEa3ugOusbUJSO1qijTLVeguBZaUVOJDAoo1-jdSXde9AidgSkF5eQc7JgzSa-s_Hsz2Z0c_F5WVVmTfKzR6zuB4H8sEJO89UuYcmbJBM0Ao4T-j6JtWTWk5TXJ1JsTZYKPMUB_n4MSeeyBzD2Qxx7I3IOMv3qY_R7-8_EZKE5AzKtpgPDA9V-CvwGV3MIG</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Saenz, D T</creator><creator>Fiskus, W</creator><creator>Qian, Y</creator><creator>Manshouri, T</creator><creator>Rajapakshe, K</creator><creator>Raina, K</creator><creator>Coleman, K G</creator><creator>Crew, A P</creator><creator>Shen, A</creator><creator>Mill, C P</creator><creator>Sun, B</creator><creator>Qiu, P</creator><creator>Kadia, T M</creator><creator>Pemmaraju, N</creator><creator>DiNardo, C</creator><creator>Kim, M-S</creator><creator>Nowak, A J</creator><creator>Coarfa, C</creator><creator>Crews, C M</creator><creator>Verstovsek, S</creator><creator>Bhalla, K N</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>5PM</scope></search><sort><creationdate>20170901</creationdate><title>Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells</title><author>Saenz, D T ; Fiskus, W ; Qian, Y ; Manshouri, T ; Rajapakshe, K ; Raina, K ; Coleman, K G ; Crew, A P ; Shen, A ; Mill, C P ; Sun, B ; Qiu, P ; Kadia, T M ; Pemmaraju, N ; DiNardo, C ; Kim, M-S ; Nowak, A J ; Coarfa, C ; Crews, C M ; Verstovsek, S ; Bhalla, K N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-6b42d432c12fb0b9fa52218f6c848bded8c73207a512b94aea4b6ba1c565226e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13</topic><topic>13/1</topic><topic>13/106</topic><topic>13/2</topic><topic>13/31</topic><topic>14</topic><topic>14/1</topic><topic>14/19</topic><topic>14/34</topic><topic>38</topic><topic>38/91</topic><topic>59/5</topic><topic>631/67/1059/602</topic><topic>631/80/82/23</topic><topic>64</topic><topic>64/60</topic><topic>82/79</topic><topic>96</topic><topic>96/2</topic><topic>Acute myeloid leukemia</topic><topic>Animals</topic><topic>Antigens, CD34</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Azepines - pharmacology</topic><topic>Azepines - therapeutic use</topic><topic>Bcl protein</topic><topic>Bcl-x protein</topic><topic>Bet protein</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>c-Myc protein</topic><topic>Cancer Research</topic><topic>CD34 antigen</topic><topic>Cell Cycle Proteins</topic><topic>Cell Line, Tumor</topic><topic>Cells (biology)</topic><topic>Critical Care Medicine</topic><topic>Cyclin-dependent kinase 4</topic><topic>Cytometry</topic><topic>Degradation</topic><topic>Depletion</topic><topic>Hematology</topic><topic>Hematopoietic stem cells</topic><topic>Humans</topic><topic>In vitro methods and tests</topic><topic>In vivo methods and tests</topic><topic>Inhibitors</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Janus kinase 2</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid, Acute - drug therapy</topic><topic>Leukemia, Myeloid, Acute - pathology</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>mRNA</topic><topic>Myc protein</topic><topic>Myeloproliferative Disorders - pathology</topic><topic>Nitriles</topic><topic>Nuclear Proteins - metabolism</topic><topic>Oncology</topic><topic>original-article</topic><topic>Perturbation</topic><topic>Progenitor cells</topic><topic>Protein arrays</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrimidines</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Stat3 protein</topic><topic>Surgical implants</topic><topic>Thalidomide - analogs &amp; derivatives</topic><topic>Thalidomide - pharmacology</topic><topic>Thalidomide - therapeutic use</topic><topic>Transcription Factors - metabolism</topic><topic>Tumor Burden - drug effects</topic><topic>Ubiquitin</topic><topic>Ubiquitin-protein ligase</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saenz, D T</creatorcontrib><creatorcontrib>Fiskus, W</creatorcontrib><creatorcontrib>Qian, Y</creatorcontrib><creatorcontrib>Manshouri, T</creatorcontrib><creatorcontrib>Rajapakshe, K</creatorcontrib><creatorcontrib>Raina, K</creatorcontrib><creatorcontrib>Coleman, K G</creatorcontrib><creatorcontrib>Crew, A P</creatorcontrib><creatorcontrib>Shen, A</creatorcontrib><creatorcontrib>Mill, C P</creatorcontrib><creatorcontrib>Sun, B</creatorcontrib><creatorcontrib>Qiu, P</creatorcontrib><creatorcontrib>Kadia, T M</creatorcontrib><creatorcontrib>Pemmaraju, N</creatorcontrib><creatorcontrib>DiNardo, C</creatorcontrib><creatorcontrib>Kim, M-S</creatorcontrib><creatorcontrib>Nowak, A J</creatorcontrib><creatorcontrib>Coarfa, C</creatorcontrib><creatorcontrib>Crews, C M</creatorcontrib><creatorcontrib>Verstovsek, S</creatorcontrib><creatorcontrib>Bhalla, K N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saenz, D T</au><au>Fiskus, W</au><au>Qian, Y</au><au>Manshouri, T</au><au>Rajapakshe, K</au><au>Raina, K</au><au>Coleman, K G</au><au>Crew, A P</au><au>Shen, A</au><au>Mill, C P</au><au>Sun, B</au><au>Qiu, P</au><au>Kadia, T M</au><au>Pemmaraju, N</au><au>DiNardo, C</au><au>Kim, M-S</au><au>Nowak, A J</au><au>Coarfa, C</au><au>Crews, C M</au><au>Verstovsek, S</au><au>Bhalla, K N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>31</volume><issue>9</issue><spage>1951</spage><epage>1961</epage><pages>1951-1961</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><abstract>The PROTAC (proteolysis-targeting chimera) ARV-825 recruits bromodomain and extraterminal (BET) proteins to the E3 ubiquitin ligase cereblon, leading to degradation of BET proteins, including BRD4. Although the BET-protein inhibitor (BETi) OTX015 caused accumulation of BRD4, treatment with equimolar concentrations of ARV-825 caused sustained and profound depletion (&gt;90%) of BRD4 and induced significantly more apoptosis in cultured and patient-derived (PD) CD34+ post-MPN sAML cells, while relatively sparing the CD34+ normal hematopoietic progenitor cells. RNA-Seq, Reverse Phase Protein Array and mass cytometry ‘CyTOF’ analyses demonstrated that ARV-825 caused greater perturbations in messenger RNA (mRNA) and protein expressions than OTX015 in sAML cells. Specifically, compared with OTX015, ARV-825 treatment caused more robust and sustained depletion of c-Myc, CDK4/6, JAK2, p-STAT3/5, PIM1 and Bcl-xL, while increasing the levels of p21 and p27. Compared with OTX015, PROTAC ARV-771 treatment caused greater reduction in leukemia burden and further improved survival of NSG mice engrafted with luciferase-expressing HEL92.1.7 cells. Co-treatment with ARV-825 and JAK inhibitor ruxolitinib was synergistically lethal against established and PD CD34+ sAML cells. Notably, ARV-825 induced high levels of apoptosis in the in vitro generated ruxolitinib-persister or ruxolitinib-resistant sAML cells. These findings strongly support the in vivo testing of the BRD4-PROTAC based combinations against post-MPN sAML.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28042144</pmid><doi>10.1038/leu.2016.393</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-6924
ispartof Leukemia, 2017-09, Vol.31 (9), p.1951-1961
issn 0887-6924
1476-5551
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5537055
source MEDLINE; Springer Online Journals Complete; Nature Journals Online
subjects 13
13/1
13/106
13/2
13/31
14
14/1
14/19
14/34
38
38/91
59/5
631/67/1059/602
631/80/82/23
64
64/60
82/79
96
96/2
Acute myeloid leukemia
Animals
Antigens, CD34
Apoptosis
Apoptosis - drug effects
Azepines - pharmacology
Azepines - therapeutic use
Bcl protein
Bcl-x protein
Bet protein
Biocompatibility
Biomedical materials
c-Myc protein
Cancer Research
CD34 antigen
Cell Cycle Proteins
Cell Line, Tumor
Cells (biology)
Critical Care Medicine
Cyclin-dependent kinase 4
Cytometry
Degradation
Depletion
Hematology
Hematopoietic stem cells
Humans
In vitro methods and tests
In vivo methods and tests
Inhibitors
Intensive
Internal Medicine
Janus kinase 2
Leukemia
Leukemia, Myeloid, Acute - drug therapy
Leukemia, Myeloid, Acute - pathology
Medicine
Medicine & Public Health
Mice
mRNA
Myc protein
Myeloproliferative Disorders - pathology
Nitriles
Nuclear Proteins - metabolism
Oncology
original-article
Perturbation
Progenitor cells
Protein arrays
Proteins
Proteolysis
Pyrazoles - pharmacology
Pyrimidines
Ribonucleic acid
RNA
Stat3 protein
Surgical implants
Thalidomide - analogs & derivatives
Thalidomide - pharmacology
Thalidomide - therapeutic use
Transcription Factors - metabolism
Tumor Burden - drug effects
Ubiquitin
Ubiquitin-protein ligase
Ubiquitin-Protein Ligases - metabolism
title Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20BET%20protein%20proteolysis-targeting%20chimera%20exerts%20superior%20lethal%20activity%20than%20bromodomain%20inhibitor%20(BETi)%20against%20post-myeloproliferative%20neoplasm%20secondary%20(s)%20AML%20cells&rft.jtitle=Leukemia&rft.au=Saenz,%20D%20T&rft.date=2017-09-01&rft.volume=31&rft.issue=9&rft.spage=1951&rft.epage=1961&rft.pages=1951-1961&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/leu.2016.393&rft_dat=%3Cproquest_pubme%3E1935809470%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1935809470&rft_id=info:pmid/28042144&rfr_iscdi=true